
h5bench
Release 1.2

Suren Byna, Houjun Tang, Quincey Koziol, Tony Li, John Ravi, Scot Breitenfield, Jean Luca Bez

Apr 07, 2023

GETTING STARTED

1 Build Instructions 3
1.1 Build with CMake (recommended) . 3
1.2 Build with Spack . 5

2 Running h5bench 7
2.1 h5bench (recommended) . 7
2.2 Manual Execution . 15

3 Read / Write 17
3.1 Configuration . 17
3.2 Supported Patterns . 19
3.3 Understanding the Output . 20
3.4 Known Issues . 21

4 Metadata Stress 23
4.1 Configuration . 23

5 AMReX 25
5.1 Configuration . 25

6 OpenPMD 29
6.1 Configuration . 29

7 Exerciser 31
7.1 Configuration . 32
7.2 Exerciser Basics . 33

8 E3SM 35
8.1 Configuration . 35

9 Ways to contribute 37
9.1 Reporting bugs . 37
9.2 Suggesting enhancements . 37
9.3 Adding new benchmarks . 37
9.4 Testing . 40

10 Copyright 41

11 License 43

i

ii

h5bench, Release 1.2

h5bench is a suite of parallel I/O benchmarks or kernels representing I/O patterns that are commonly used in HDF5
applications on high performance computing systems. H5bench measures I/O performance from various aspects, in-
cluding the I/O overhead, observed I/O rate, etc.

These are the benchmarks and kernels currently available in h5bench:

Benchmark Name SYNC ASYNC VOL
h5bench write h5bench_write
h5bench read h5bench_read
Metadata Stress h5bench_hdf5_iotest
AMReX h5bench_amrex
Exerciser h5bench_exerciser
OpenPMD (write) h5bench_openpmd_write
OpenPMD (read) h5bench_openpmd_read
E3SM-IO h5bench_e3sm

GETTING STARTED 1

h5bench, Release 1.2

2 GETTING STARTED

CHAPTER

ONE

BUILD INSTRUCTIONS

1.1 Build with CMake (recommended)

First, clone the h5bench GitHub repository and ensure you are cloning the submodules:

git clone --recurse-submodules https://github.com/hpc-io/h5bench

If you are upadting your h5bench, ensure you have the latest submodules that could be included in new releases:

git submodule update --init

1.1.1 Dependency and environment variable settings

H5bench depends on MPI and parallel HDF5.

Use system provided by HDF5

For instance on the Cori system at NERSC:

module load cray-hdf5-parallel

You can also load any paralel HDF5 provided on your system, and you are good to go.

Use your own installed HDF5

Make sure to unload any system provided HDF5 version:, and set an environment variable to specify the HDF5 install
path:

export HDF5_HOME=/path/to/your/hdf5/installation

It should point to a path that contains the include/, lib/, and bin/ subdirectories.

3

h5bench, Release 1.2

1.1.2 Compile with CMake

In the source directory of your cloned h5bench repository, run the following:

mkdir build
cd build

cmake ..

make
make install

Warning: If you plan on calling make install please notice that the default behavior of CMake
is to install it system-wide. You can change the destination installation folder by passing the
-DCMAKE_INSTALL_PREFIX=<path> to override with your defined installation directory.

By default, h5bench will only compile the base write and read benchmarks. To enable the additional bench-
marks, you need to explicitly enable them before building h5bench. You can also enable all the benchmarks with
-DH5BENCH_ALL=ON. Notice that some of them have additional dependencies.

Benchmark Name Build
h5bench write h5bench_write Always
h5bench read h5bench_read Always
Metadata Stress h5bench_hdf5_iotest -DH5BENCH_METADATA=ON
AMReX h5bench_amrex -DH5BENCH_AMREX=ON
Exerciser h5bench_exerciser -DH5BENCH_EXERCISER=ON
OpenPMD (write) h5bench_openpmd_write -DH5BENCH_OPENPMD=ON
OpenPMD (read) h5bench_openpmd_read -DH5BENCH_OPENPMD=ON
E3SM-IO h5bench_e3sm -DH5BENCH_E3SM=ON

Warning: If you want to specify the installation directory, you can pass -DCMAKE_INSTALL_PREFIX to cmake. If
you are not installing it, make sure when you run h5bench, you update your environment variables to include the
build directory. Otherwise, h5bench will not be able to find all the benchmarks.

1.1.3 Build with HDF5 ASYNC VOL connector support

To run _async benchmarks, you need the develop branch of both HDF5 and ASYNC-VOL. When building h5bench
you need to specify the -DWITH_ASYNC_VOL:BOOL=ON option and have already compiled the VOL connector in the
$ASYNC_VOL directory:

mkdir build
cd build

cmake .. -DWITH_ASYNC_VOL=ON -DCMAKE_C_FLAGS="-I/$ASYNC_VOL/src -L/$ASYNC_VOL/src"

make
make install

4 Chapter 1. Build Instructions

h5bench, Release 1.2

h5bench will automatically set the environment variables required to run the asynchronous versions, as long as you
specify them in your JSON configuration file. However, if you run the benchmarks manually, you will need to set the
following environment variables:

export HDF5_HOME="$YOUR_HDF5_DEVELOP_BRANCH_BUILD/hdf5"
export ASYNC_HOME="$YOUR_ASYNC_VOL/src"

export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"
export HDF5_PLUGIN_PATH="$ASYNC_HOME"

Linux
export LD_LIBRARY_PATH="$HDF5_HOME/lib:$ASYNC_HOME"
MacOS
export DYLD_LIBRARY_PATH="$HDF5_HOME/lib:$ASYNC_HOME"

1.2 Build with Spack

You can also use Spack to install h5bench:

spack install h5bench

There are some variants available as described bellow:

CMakePackage: h5bench

Description:
A benchmark suite for measuring HDF5 performance.

Homepage: https://github.com/hpc-io/h5bench

Preferred version:
1.2 [git] https://github.com/hpc-io/h5bench.git at commit␣

→˓866af6777573d20740d02acc47a9080de093e4ad

Safe versions:
develop [git] https://github.com/hpc-io/h5bench.git on branch develop
1.2 [git] https://github.com/hpc-io/h5bench.git at commit␣

→˓866af6777573d20740d02acc47a9080de093e4ad
1.1 [git] https://github.com/hpc-io/h5bench.git at commit␣

→˓1276530a128025b83a4d9e3814a98f92876bb5c4
1.0 [git] https://github.com/hpc-io/h5bench.git at commit␣

→˓9d3438c1bc66c5976279ef203bd11a8d48ade724
latest [git] https://github.com/hpc-io/h5bench.git on branch master

Deprecated versions:
None

Variants:
Name [Default] When Allowed values Description
=========================== ======= ==================== ␣

→˓==================================

(continues on next page)

1.2. Build with Spack 5

h5bench, Release 1.2

(continued from previous page)

all [off] @1.2: on, off Enables all␣
→˓h5bench benchmarks

amrex [off] @1.2: on, off Enables AMReX␣
→˓benchmark

build_type [RelWithDebInfo] -- Debug, Release, CMake build type
RelWithDebInfo,
MinSizeRel

e3sm [off] @1.2: on, off Enables E3SM␣
→˓benchmark

exerciser [off] @1.2: on, off Enables exerciser␣
→˓benchmark

ipo [off] -- on, off CMake␣
→˓interprocedural optimization

metadata [off] @1.2: on, off Enables metadata␣
→˓benchmark

openpmd [off] @1.2: on, off Enables OpenPMD␣
→˓benchmark

Build Dependencies:
cmake hdf5 mpi parallel-netcdf

Link Dependencies:
hdf5 mpi parallel-netcdf

Run Dependencies:
None

Warning: Current h5bench versions in Spack do not have support for the HDF5 VOL async/cache connectors yet.

6 Chapter 1. Build Instructions

CHAPTER

TWO

RUNNING H5BENCH

2.1 h5bench (recommended)

We provide a single script you can use to run the benchmarks available in the h5bench Benchmarking Suite. You can
combine multiple benchmarks into a workflow with distinct configurations. If you prefer, you can also manually run
each benchmark in h5bench. For more details, refer to the Manual Execution section.

usage: h5bench [-h] [--abort-on-failure] [--debug] [--validate-mode] setup

H5bench: a Parallel I/O Benchmark Suite for HDF5:

positional arguments:
setup JSON file with the benchmarks to run

optional arguments:
-h, --help show this help message and exit
--abort-on-failure Stop h5bench if a benchmark failed
--debug Enable debug mode
--validate-mode Validated if the requested mode (async/sync) was run

You need to provide a JSON file with the configurations you want to run. If you’re using h5bench, you should not
call mpirun, srun, or any other parallel launcher on your own. Refer to the manual execution section if you want to
follow that approach instead. The main script will handle setting and unsetting environment variables, launching the
benchmarks with the provided configuration and HDF5 VOL connectors.

./h5bench configuration.json

If you run it with the --debug option, h5bench will also print log messages stdout. The default behavior is to store
it in a file.

Warning: Make sure you do not call srun, mpirun, etc directly but instead define that in the JSON configuration
file. You should always call h5bench directly.

7

h5bench, Release 1.2

2.1.1 Configuration

The JSON configuration file has five main properties: mpi, vol, file-system, directory, benchmarks. All should
be defined, even if empty.

MPI

You can set the MPI launcher you want to use, e.g. mpirun, mpiexec, and srun, and provide the number of pro-
cesses you want to use. For other methods or a fine grain control on the job configuration, you can define the
configuration properties that h5bench will use to launch the experiments using the command property you provided.
If the configuration option is defined, h5bench will ignore the ranks property.

"mpi": {
"command": "mpirun",
"ranks": "4",
"configuration": "-np 8 --oversubscribe"

}

VOL

You can use HDF5 VOL connectors (async, cache, etc) for h5bench_write and h5bench_read. Because some
benchmarks inside h5bench do not have support for VOL connectors yet, you need to provide the necessary information
in the configuration file to handle the VOL setup during runtime.

"vol": {
"library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/install/

→˓lib:/hdf5-install/install:",
"path": "/vol-async/src",
"connector": "async under_vol=0;under_info={}"

}

You should provide the absolute path for all the libraries required by the VOL connector using the library property,
the path of the VOL connector, and the configuration in connector. The provided example depicts how to configure
the HDF5 VOL async connector.

Directory

h5bench will create a directory for the given execution workflow, where it will store all the generated files and logs.
Additional options such as data striping for Lustre, if configured, will be applied to this directory.

"directory": "hdf5-output-directory"

8 Chapter 2. Running h5bench

h5bench, Release 1.2

File System

You can use this property to configure some file system options. For now, you can use it for Lustre to define the striping
count and size that should be applied to the directory that will store all the generated data from h5bench.

"file-system": {
"lustre": {

"stripe-size": "1M",
"stripe-count": "4"

}
}

Benchmarks

You can specify which benchmarks h5bench should run using this property, their order, and configuration. You can
choose between: write, write-unlimited, overwrite, append, read, metadata, exerciser, openpmd, amrex,
e3sm.

For each pattern of h5bench, you should provide the file and the configuration:

{
"benchmark": "write",
"file": "test.h5",
"configuration": {

"MEM_PATTERN": "CONTIG",
"FILE_PATTERN": "CONTIG",
"NUM_PARTICLES": "16 M",
"TIMESTEPS": "5",
"DELAYED_CLOSE_TIMESTEPS": "2",
"COLLECTIVE_DATA": "NO",
"COLLECTIVE_METADATA": "NO",
"EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
"NUM_DIMS": "1",
"DIM_1": "16777216",
"DIM_2": "1",
"DIM_3": "1",
"MODE": "SYNC",
"CSV_FILE": "output.csv"

}
}

If you provide the same file name used for a previous write execution, it will read from that file. This way, you can
configure a workflow with multiple interleaving files, e.g., write file-01, write file-02, read file-02, read file-01.

{
"benchmark": "read": {
"file": "test.h5",
"configuration": {

"MEM_PATTERN": "CONTIG",
"FILE_PATTERN": "CONTIG",
"NUM_PARTICLES": "16 M",
"TIMESTEPS": "5",
"DELAYED_CLOSE_TIMESTEPS": "2",

(continues on next page)

2.1. h5bench (recommended) 9

h5bench, Release 1.2

(continued from previous page)

"COLLECTIVE_DATA": "NO",
"COLLECTIVE_METADATA": "NO",
"EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
"NUM_DIMS": "1",
"DIM_1": "16777216",
"DIM_2": "1",
"DIM_3": "1",
"MODE": "SYNC",
"CSV_FILE": "output.csv"

}
}

For the metadata stress benchmark, file and configuration properties must be defined:

{
"benchmark": "metadata",
"file": "hdf5_iotest.h5",
"configuration": {

"version": "0",
"steps": "20",
"arrays": "500",
"rows": "100",
"columns": "200",
"process-rows": "2",
"process-columns": "2",
"scaling": "weak",
"dataset-rank": "4",
"slowest-dimension": "step",
"layout": "contiguous",
"mpi-io": "independent",
"csv-file": "hdf5_iotest.csv"

}
}

For the exerciser benchmark, you need to provide the required runtime options in the JSON file inside the
configuration property.

{
"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
}

You can find several samples of configuration file with all the optins in the our [GitHub repository] (https://github.com/
hpc-io/h5bench/tree/master/samples). You can also refer to this sample of a complete configuration.json file that
defined the workflow of the execution of multiple benchmarks from h5bench Suite:

10 Chapter 2. Running h5bench

https://github.com/hpc-io/h5bench/tree/master/samples
https://github.com/hpc-io/h5bench/tree/master/samples

h5bench, Release 1.2

{
"mpi": {

"command": "mpirun",
"ranks": "4",
"configuration": "-np 8 --oversubscribe"

},
"vol": {

"library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/
→˓install/lib:/hdf5-install/install:",

"path": "/vol-async/src",
"connector": "async under_vol=0;under_info={}"

},
"file-system": {

"lustre": {
"stripe-size": "1M",
"stripe-count": "4"

}
},
"directory": "full-teste",
"benchmarks": [

{
"benchmark": "e3sm",
"file": "coisa.h5",
"configuration": {

"k": "",
"x": "blob",
"a": "hdf5",
"r": "25",
"o": "ON",
"netcdf": "../../e3sm/datasets/f_case_866x72_16p.nc"

}
},
{

"benchmark": "write",
"file": "test.h5",
"configuration": {

"MEM_PATTERN": "CONTIG",
"FILE_PATTERN": "CONTIG",
"NUM_PARTICLES": "16 M",
"TIMESTEPS": "5",
"DELAYED_CLOSE_TIMESTEPS": "2",
"COLLECTIVE_DATA": "NO",
"COLLECTIVE_METADATA": "NO",
"EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
"NUM_DIMS": "1",
"DIM_1": "16777216",
"DIM_2": "1",
"DIM_3": "1",
"MODE": "SYNC",
"CSV_FILE": "output.csv"

}
},
{

(continues on next page)

2.1. h5bench (recommended) 11

h5bench, Release 1.2

(continued from previous page)

"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
},
{

"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
},
{

"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
},
{

"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
},
{

"benchmark": "exerciser",
"configuration": {

"numdims": "2",
"minels": "8 8",
"nsizes": "3",
"bufmult": "2 2",
"dimranks": "8 4"

}
},
{

"benchmark": "read",
"file": "test.h5",

(continues on next page)

12 Chapter 2. Running h5bench

h5bench, Release 1.2

(continued from previous page)

"configuration": {
"MEM_PATTERN": "CONTIG",
"FILE_PATTERN": "CONTIG",
"NUM_PARTICLES": "16 M",
"TIMESTEPS": "5",
"DELAYED_CLOSE_TIMESTEPS": "2",
"COLLECTIVE_DATA": "NO",
"COLLECTIVE_METADATA": "NO",
"EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
"NUM_DIMS": "1",
"DIM_1": "16777216",
"DIM_2": "1",
"DIM_3": "1",
"MODE": "SYNC",
"CSV_FILE": "output.csv"

}
},
{

"benchmark": "write",
"file": "test-two.h5",
"configuration": {

"MEM_PATTERN": "CONTIG",
"FILE_PATTERN": "CONTIG",
"NUM_PARTICLES": "2 M",
"TIMESTEPS": "20",
"DELAYED_CLOSE_TIMESTEPS": "2",
"COLLECTIVE_DATA": "NO",
"COLLECTIVE_METADATA": "NO",
"EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
"NUM_DIMS": "1",
"DIM_1": "16777216",
"DIM_2": "1",
"DIM_3": "1",
"MODE": "SYNC",
"CSV_FILE": "output.csv"

}
},
{

"benchmark": "metadata",
"file": "hdf5_iotest.h5",
"configuration": {

"version": "0",
"steps": "20",
"arrays": "500",
"rows": "100",
"columns": "200",
"process-rows": "2",
"process-columns": "2",
"scaling": "weak",
"dataset-rank": "4",
"slowest-dimension": "step",
"layout": "contiguous",

(continues on next page)

2.1. h5bench (recommended) 13

h5bench, Release 1.2

(continued from previous page)

"mpi-io": "independent",
"csv-file": "hdf5_iotest.csv"

}
}

]
}

For a description of all the options available in each benchmark, please refer to their entries in the documentation.

When the --debug option is enabled, you can expect an output similar to:

2021-10-25 16:31:24,866 h5bench - INFO - Starting h5bench Suite
2021-10-25 16:31:24,889 h5bench - INFO - Lustre support detected
2021-10-25 16:31:24,889 h5bench - DEBUG - Lustre stripping configuration: lfs setstripe -
→˓S 1M -c 4 full-teste
2021-10-25 16:31:24,903 h5bench - INFO - h5bench [write] - Starting
2021-10-25 16:31:24,903 h5bench - INFO - h5bench [write] - DIR: full-teste/504fc233/
2021-10-25 16:31:24,904 h5bench - INFO - Parallel setup: srun --cpu_bind=cores -n 4
2021-10-25 16:31:24,908 h5bench - INFO - srun --cpu_bind=cores -n 4 build/h5bench_write␣
→˓full-teste/504fc233/h5bench.cfg full-teste/test.h5
2021-10-25 16:31:41,670 h5bench - INFO - SUCCESS
2021-10-25 16:31:41,754 h5bench - INFO - Runtime: 16.8505464 seconds (elapsed time,␣
→˓includes allocation wait time)
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [write] - Complete
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [exerciser] - Starting
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [exerciser] - DIR: full-teste/247659d1/
2021-10-25 16:31:41,755 h5bench - INFO - Parallel setup: srun --cpu_bind=cores -n 4
2021-10-25 16:31:41,756 h5bench - INFO - srun --cpu_bind=cores -n 4 build/h5bench_
→˓exerciser --numdims 2 --minels 8 8 --nsizes 3 --bufmult 2 2 --dimranks 8 4
2021-10-25 16:31:49,174 h5bench - INFO - SUCCESS
2021-10-25 16:31:49,174 h5bench - INFO - Finishing h5bench Suite

Cori

In Cori you need to load Python and its libraries for the main h5bench script to work. For manual execution of each
benchmark that is not required.

module load python

In case you are running on Cori and the benchmark fails with an MPI message indicating no support for multiple
threads:

Assertion `MPI_THREAD_MULTIPLE == mpi_thread_lvl_p rovided' failed.

Please, make sure you define the following:

export MPICH_MAX_THREAD_SAFETY="multiple"

14 Chapter 2. Running h5bench

h5bench, Release 1.2

2.2 Manual Execution

If you prefer, you can execute each benchmark manually. In this scenario, you will be responsible for generating the
input configuration file needed for each benchmark in the suite, ensuring it follows the pre-defined format unique for
each one.

If you want to use HDF5 VOL connectors or tune the file system configuration, h5bench will not take care of that.
Remember that not all benchmarks in the suite have support for VOL connectors yet.

2.2. Manual Execution 15

h5bench, Release 1.2

16 Chapter 2. Running h5bench

CHAPTER

THREE

READ / WRITE

This set of benchmarks contains an I/O kernel developed based on a particle physics simulation’s I/O pattern (VPIC-IO
for writing data in a HDF5 file) and on a big data clustering algorithm (BDCATS-IO for reading the HDF5 file VPIC-IO
wrote).

3.1 Configuration

You can configure the h5bench_write and h5bench_read benchmarks with the following options. Notice that if
you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final
configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can
check the input format at the end of this document and refer to its documentation.

Parameter Description
MEM_PATTERN Options: CONTIG, INTERLEAVED, and STRIDED
FILE_PATTERN Options: CONTIG and STRIDED
TIMESTEPS The number of iterations
EMULATED_COMPUTE_TIME_PER_TIMESTEP Sleeps after each iteration to emulate computation
NUM_DIMS The number of dimensions, valid values are 1, 2 and 3
DIM_1 The dimensionality of the source data
DIM_2 The dimensionality of the source data
DIM_3 The dimensionality of the source data

For MEM_PATTERN, CONTIG represents arrays of basic data types (i.e., int, float, double, etc.); INTERLEAVED represents
an array of structure (AOS) where each array element is a C struct; and STRIDED represents a few elements in an array
of basic data types that are separated by a constant stride. STRIDED is supported only for 1D arrays.

For FILE_PATTERN, CONTIG represents a HDF5 dataset of basic data types (i.e., int, float, double, etc.); INTERLEAVED
represents a dataset of a compound datatype;

For EMULATED_COMPUTE_TIME_PER_TIMESTEP, you must provide the time unit (e.g. 10 s, 100 ms, or 5000us) to
ensure correct behavior.

For DIM_2 and DIM_3 if unused, you should set both as 1. Notice that the total number of particles will be given by
DIM_1 * DIM_2 * DIM_3. For example, DIM_1=1024, DIM_2=256, DIM_3=1 is a valid setting for a 2D array and it
will generate 262144 particles.

A set of sample configuration files can be found in the samples/ diretory in GitHub.

17

h5bench, Release 1.2

3.1.1 READ Settings (h5bench_read)

Parameter Description
READ_OPTION Options: FULL, PARTIAL, and STRIDED

For the PARTIAL option, the benchmark will read only the first TO_READ_NUM_PARTICLES particles.

3.1.2 Asynchronous Settings

Parameter Description
MODE Options: SYNC or ASYNC
IO_MEM_LIMIT Memory threshold to determine when to execute I/O
DELAYED_CLOSE_TIMESTEPS Groups and datasets will be closed later.

The IO_MEM_LIMIT parameter is optional. Its default value is 0 and it requires ASYNC, i.e., it only works in asyn-
chronous mode. This is the memory threshold used to determine when to actually execute the I/O operations. The
actual I/O operations (data read/write) will not be executed until the timesteps associated memory reachs the threshold,
or the application run to the end.

For the ASYNC mode to work you must define the necessay HDF5 ASYNC-VOL connector. For more information
about it, refer to its documentation.

3.1.3 Compression Settings

Parameter Description
COMPRESS YES or NO (optional) enables parralel compression
CHUNK_DIM_1 Chunk dimension
CHUNK_DIM_2 Chunk dimension
CHUNK_DIM_3 Chunk dimension

Compression is only applicable for h5bench_write. It has not effect for h5bench_read. When enabled the chunk
dimensions parameters (CHUNK_DIM_1, CHUNK_DIM_2, CHUNK_DIM_3) are required. The chunk dimension settings
should be compatible with the data dimensions, i.e., they must have the same rank of dimensions, and chunk dimension
size cannot be greater than data dimension size. Extra chunk dimensions have no effect and should be set to 1.

Warning: There is a known bug on HDF5 parallel compression that could cause the system run out of memory
when the chunk amount is large (large number of particle and very small chunk sizes). On Cori Hasswell nodes,
the setting of 16M particles per rank, 8 nodes (total 256 ranks), 64 * 64 chunk size will crash the system by runing
out of memory, on single nodes the minimal chunk size is 4 * 4.

18 Chapter 3. Read / Write

https://hdf5-vol-async.readthedocs.io/en/latest/

h5bench, Release 1.2

3.1.4 Collective Operation Settings

Parameter Description
COLLECTIVE_DATA Enables collective operation (default is NO)
COLLECTIVE_METADATA Enables collective HDF5 metadata (default is NO)

Both COLLECTIVE_DATA and COLLECTIVE_METADATA parameters are optional.

3.1.5 CSV Settings

Performance results will be written to this file and standard output once a file name is provided.

Parameter Description
CSV_FILE CSV file name to store benchmark results

3.2 Supported Patterns

Attention: Not every pattern combination is covered by the benchmark. Supported benchmark parameter settings
are listed below.

3.2.1 Supported Write Patterns (h5bench_write)

The I/O patterns include array of structures (AOS) and structure of arrays (SOA) in memory as well as in file. The
array dimensions are 1D, 2D, and 3D for the write benchmark. This defines the write access pattern, including CONTIG
(contiguous), INTERLEAVED and STRIDED for the source (the data layout in the memory) and the destination (the
data layout in the resulting file). For example, MEM_PATTERN=CONTIG and FILE_PATTERN=INTERLEAVED is a write
pattern where the in-memory data layout is contiguous (see the implementation of prepare_data_contig_2D()
for details) and file data layout is interleaved by due to its compound data structure (see the implementation of
data_write_contig_to_interleaved() for details).

• 4 patterns for both 1D and 2D array write (NUM_DIMS=1 or NUM_DIMS=2)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'INTERLEAVED'

'MEM_PATTERN': 'INTERLEAVED'
'FILE_PATTERN': 'CONTIG'

'MEM_PATTERN': 'INTERLEAVED'
'FILE_PATTERN': 'INTERLEAVED'

• 1 pattern for 3D array (NUM_DIMS=3)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'

3.2. Supported Patterns 19

h5bench, Release 1.2

• 1 strided pattern for 1D array (NUM_DIMS=1)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'STRIDED'

3.2.2 Supported Read Patterns (h5bench_read)

• 1 pattern for 1D, 2D and 3D read (NUM_DIMS=1 or NUM_DIMS=2)

Contiguously read through the whole data file:

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'
'READ_OPTION': 'FULL'

• 2 patterns for 1D read

Contiguously read the first TO_READ_NUM_PARTICLES elements:

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'
'READ_OPTION': 'PARTIAL'

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'STRIDED'
'READ_OPTION': 'STRIDED'

3.3 Understanding the Output

The metadata and raw data operations are timed separately, and the overserved time and I/O rate are based on the total
time.

Sample output of h5bench_write:

================== Performance results =================
Total emulated compute time 4000 ms
Total write size = 2560 MB
Data preparation time = 739 ms
Raw write time = 1.012 sec
Metadata time = 284.990 ms
H5Fcreate() takes 4.009 ms
H5Fflush() takes 14.575 ms
H5Fclose() takes 4.290 ms
Observed completion time = 6.138 sec
Raw write rate = 2528.860 MB/sec
Observed write rate = 1197.592 MB/sec

Sample output of h5bench_read:

================= Performance results =================
Total emulated compute time = 4 sec
Total read size = 2560 MB

(continues on next page)

20 Chapter 3. Read / Write

h5bench, Release 1.2

(continued from previous page)

Metadata time = 17.523 ms
Raw read time = 1.201 sec
Observed read completion time = 5.088 sec
Raw read rate = 2132.200 MB/sec
Observed read rate = 2353.605225 MB/sec

3.4 Known Issues

Warning: In Cori/NERSC or similar platforms that use Cray-MPICH library, if you encouter a failed assertion
regarding support for MPI_THREAD_MULTIPLE you should define the following environment variable:

export MPICH_MAX_THREAD_SAFETY="multiple"

Warning: If you’re trying to run the benchmark with the HDF5 VOL ASYNC connector in MacOS and are getting
segmentation fault (from ABT_thread_create), please try to set the following environment variable:

export ABT_THREAD_STACKSIZE=100000

3.4. Known Issues 21

h5bench, Release 1.2

22 Chapter 3. Read / Write

CHAPTER

FOUR

METADATA STRESS

The Metadata Stress benchmark (h5bench_hdf5_iotest) is a simple I/O performance tester for HDF5. Its purpose
is to assess the performance variability of a set of logically equivalent HDF5 representations of a common pattern.
The test repeatedly writes (and reads) in parallel a set of 2D array variables in a tiled fashion, over a set of time steps.
For more information referer to HDF Group GitHub repository. We modified this benchmark slightly so to be able to
specify the config file location, everything else remains untouched.

4.1 Configuration

You can configure the Metadata Stress test with the following options. Notice that if you use the configuration.
json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the
options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the
end of this document and refer to its documentation.

Parameter Description
steps Number of steps
arrays Number of arrays
rows Total number of array rows for strong scaling. Number of array rows per block for weak

scaling.
columns Total number of array columns for strong scaling. Number of array columns per block for

weak scaling.
process-rows Number of MPI-process rows: rows % proc-rows == 0 for strong scaling
process-columns Number of MPI-process columns: columns % proc-columns == 0 for strong scaling
scaling Scaling ([weak, strong])
dataset-rank Rank of the dataset(s) in the file ([2, 3, 4])
slowest-dimension Slowest changing dimension ([step, array])
layout HDF5 dataset layout ([contiguous, chunked]
mpi-io MPI I/O mode ([independent, collective])
hdf5-file HDF5 output file name
csv-file CSV results file name

23

https://github.com/HDFGroup/hdf5-iotest

h5bench, Release 1.2

4.1.1 JSON Configuration (recomended)

To run an instance of Metadata Stress Test benchmark you need to include the following in the benchmarks property
of your configuration.json file:

{
"benchmark": "metadata",
"file": "hdf5_iotest.h5",
"configuration": {

"version": "0",
"steps": "20",
"arrays": "500",
"rows": "100",
"columns": "200",
"process-rows": "2",
"process-columns": "2",
"scaling": "weak",
"dataset-rank": "4",
"slowest-dimension": "step",
"layout": "contiguous",
"mpi-io": "independent",
"csv-file": "hdf5_iotest.csv"

}
}

4.1.2 Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the
h5bench_hdf5_iotest executable.

[DEFAULT]
version = 0
steps = 20
arrays = 500
rows = 100
columns = 200
process-rows = 1
process-columns = 1
scaling = weak
dataset-rank = 4
slowest-dimension = step
layout = contiguous
mpi-io = independent
hdf5-file = hdf5_iotest.h5
csv-file = hdf5_iotest.csv

24 Chapter 4. Metadata Stress

CHAPTER

FIVE

AMREX

AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applica-
tions.

You can find more information in AMReX-Codes GitHub repository.

5.1 Configuration

You can configure the AMReX HDF5 benchmark with the following options. Notice that if you use the
configuration.json approach to define the runs for h5bench, we will automatically generate the final configu-
ration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check
the input format at the end of this document and refer to its documentation.

Parameter Description
ncells Domain size
max_grid_size The maximum allowable size of each subdomain (used for parallel decomposal)
nlevs Number of levels
ncomp Number of components in the multifabs
nppc Number of particles per cell
nplotfile Number of plot files to write
nparticlefile Number of particle files to write
sleeptime Time to sleep before each write
restart_check Whether to check the correctness of checkpoint/restart
grids_from_file Enable AMReX to read grids from file
ref_ratio_file Refinement ratios for different AMReX refinement levels
hdf5compression Define the HDF5 compression algorithm to use

5.1.1 JSON Configuration (recomended)

To run an instance of AMReX HDF5 benchmark you need to include the following in the benchmarks property of
your configuration.json file:

{
"benchmark": "amrex",
"file": "amrex.h5",
"configuration": {

"ncells": "64",
"max_grid_size": "8",

(continues on next page)

25

https://amrex-codes.github.io/amrex

h5bench, Release 1.2

(continued from previous page)

"nlevs": "1",
"ncomp": "6",
"nppc": "2",
"nplotfile": "2",
"nparticlefile": "2",
"sleeptime": "2",
"restart_check": "1",
"hdf5compression": "ZFP_ACCURACY#0.001",
"mode": "SYNC"

}
}

To read grids from file you need to set: grids_from_file, nlevels, and ref_ratio_file.

{
"benchmark": "amrex",
"file": "amrex.h5",
"configuration": {

"ncells": "64",
"max_grid_size": "8",
"nlevs": "1",
"ncomp": "6",
"nppc": "2",
"nplotfile": "2",
"nparticlefile": "2",
"sleeptime": "2",
"restart_check": "1",
"hdf5compression": "ZFP_ACCURACY#0.001",
"mode": "SYNC",
"nlevs": "3",
"grids_from_file": "1",
"ref_ratio_file": "4 2"

}
}

5.1.2 HDF5 ASYNC VOL Connector

AMReX supports the HDF5 ASYNC VOL connector. To enable it, you should specify in the vol property of you
configuration.json file: the required library paths, the VOL ASYNC source path, and the connector setup.

"vol": {
"library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/install/

→˓lib:/hdf5-install/install:",
"path": "/vol-async/src",
"connector": "async under_vol=0;under_info={}"

}

26 Chapter 5. AMReX

https://github.com/hpc-io/vol-async

h5bench, Release 1.2

5.1.3 Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the
h5bench_amrex executable.

ncells = 64
max_grid_size = 8
nlevs = 1
ncomp = 6
nppc = 2
nplotfile = 2
nparticlefile = 2
sleeptime = 2
restart_check = 1

Uncomment to read grids from file
nlevs = 3
grids_from_file = 1
ref_ratio_file = 4 2

Uncomment to enable compression
hdf5compression=ZFP_ACCURACY#0.001

directory = .

5.1. Configuration 27

h5bench, Release 1.2

28 Chapter 5. AMReX

CHAPTER

SIX

OPENPMD

OpenPMD is an open meta-data schema that provides meaning and self-description for data sets in science and engi-
neering.

The openPMD-api library provides a reference API for openPMD data handling. In the h5bench Benchmarking Suite
we provide support for the write and read parallel benchmarks with HDF5 backend. You can find more information in
OpenPMD documentation.

6.1 Configuration

You can configure the openPMD write HDF5 benchmark with the following options. Notice that if you use the
configuration.json approach to define the runs for h5bench, we will automatically generate the final configu-
ration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check
the input format at the end of this document and refer to its documentation.

Parameter Description
operation Operation: write or read
fileLocation Directory where the file will be written to or read from

When running with the write operation, you have to define the following options:

dim Number of dimensions (1, 2, or 3) balanced Should it use a balanced load? (true or false) ratio Particle to
mesh ratio steps Number of iteration steps minBlock Meshes are viewed as grid of mini blocks grid Grid based on
the mini block

When running with the read operation, you have to define the pattern:

pattern Read access pattern

The minBlock and grid parameters must include the values for each of the dim dimensions. For example, if "dim":
"3" (for a 3D mesh) minBlock should contain three values, one for each dimenseion "16 32 32" and grid (which
is based on the mini block) should also contain three values, one for each dimension "32 32 16".

For the pattern attribute for read you can chose:

• m: metadata only

• sx: slice of the ‘rho’ mesh in the x-axis (eg. x=0)

• sy: slice of the ‘rho’ mesh in the y-axis (eg. y=0)

• sz: slice of the ‘rho’ mesh in the z-axis (eg. z=0)

• fx: slice of the 3D magnetic field in the x-axis (eg. x=0)

• fy: slice of the 3D magnetic field in the y-axis (eg. y=0)

29

openpmd-api.readthedocs.io

h5bench, Release 1.2

• fz: slice of the 3D magnetic field in the z-axis (eg. z=0)

6.1.1 JSON Configuration (recomended)

To run an instance of openPMD HDF5 benchmark you need to include the following in the benchmarks property of
your configuration.json file:

{
"benchmark": "openpmd",
"configuration": {

"operation": "write",
"dim": "3",
"balanced": "true",
"ratio": "1",
"steps": "1",
"minBlock": "8 16 16",
"grid": "16 16 8"

}
},
{

"benchmark": "openpmd",
"configuration": {

"operation": "read",
"dim": "3",
"balanced": "true",
"ratio": "1",
"steps": "1",
"minBlock": "8 16 16",
"grid": "16 16 8"

}
}

6.1.2 Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the
h5bench_openpmd_write.

dim=3
balanced=true
ratio=1
steps=10
minBlock=16 32 32
grid=32 32 16

For the h5bench_openpmd_read, you need to provide two arguments: the file prefix and the pattern.

30 Chapter 6. OpenPMD

CHAPTER

SEVEN

EXERCISER

Attention: For more-detailed instructions of how to build and run the exerciser code on specific machines (at
ALCF), see the Exerciser/BGQ/VESTA_XL/README.md and Exerciser/BGQ/THETA/README.md directories
of this repository. Those README files also include instructions for building the CCIO and develop versions of
HDF5 for use with this benchmark.

The HDF5 Exerciser Benchmark creates an HDF5 use case with some ideas/code borrowed from other benchmarks
(namely IOR, VPICIO and FLASHIO). Currently, the algorithm does the following in parallel over all MPI ranks:

• For each rank, a local data buffer (with dimensions given by numdims is initialized with minNEls double-
precision elements in each dimension

• If the derivedtype flag is used, a second local dataset is also specified with a derived data type a-signed to each
element

• For a given number of iterations (hardcoded as NUM_ITERATIONS):

– Open a file, create a top group, set the MPI-IO transfer property, and (optionally) add a simple attribute
string to the top group

– Create memory and file dataspaces with hyperslab selections for simple rank-ordered offsets into the file.
The rshift option can be used to specify the number of rank positions to shift the write position in the
file (the read will be shifted twice this amount to avoid client-side caching effects

– Write the data and close the file

– Open the file, read in the data, and check correctness (if dataset is small enough)

– Close the dataset (but not the file)

– If the second (derived-type) data set is specified: (1) create a derived type, (2) open a new data set with the
same number of elements and dimension, (3) write the data and (4) close everything

• Each dimension of curNEls is then multiplied by each dimension of bufMult, and the previous steps (the loop
over NUM_ITERATIONS) are repeated. This outer loop over local buffer sizes is repeated a total of nsizes times

31

h5bench, Release 1.2

7.1 Configuration

You can configure the h5bench_write and h5bench_read benchmarks with the following options. Notice that if
you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final
configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can
check the input format at the end of this document and refer to its documentation.

7.1.1 Required

Parameter Description
numdims <x> Dimension of the datasets to write to the HDF5 file
minels <x> ...
<x>

Min number of double elements to write in each dim of the dataset (one value for each
dimension)

7.1.2 Optional

Parameter Description
nsizes <x> How many buffer sizes to use (Code will start with minbuf and loop through nsizes iterations,

with the buffer size multiplied by bufmult in each dim, for each iteration)
bufmult <x>
... <x>

Constant, for each dimension, used to multiply the buffer [default: 2 2 . . .]

metacoll Whether to set meta data collective usage [default: False]
derivedtype Whether to create a second data set containing a derived type [default: False]
addattr Whether to add attributes to group 1 [default: False]
indepio Whether to use independant I/O (not MPI-IO) [default: False]
keepfile Whether to keep the file around after the program ends for futher analysis, otherwise deletes it

[default: False]
usechunked Whether to chunk the data when reading/writing [default: False]
maxcheck <x> Maximum buffer size (in bytes) to validate. Note that all buffers will be vaidated if this option is

not set by this command-line argument [default: Inf]
memblock <x> Define the block size to use in the local memory buffer (local buffer is always 1D for now, Note:

This currently applies to the ‘double’ dataset only) [default: local buffer size]
memstride
<x>

Define the stride of the local memory buffer (local buffer is always 1D for now, Note: This
currently applies to the ‘double’ dataset only) [default: local buffer size]

fileblocks
<x> ...<x>

Block sizes to use in the file for each dataset dimension (Note: This currently applies to the
‘double’ dataset only) [default: 1 . . . 1]

filestrides
<x> ...<x>

Stride dist. to use in the file for each dataset dimension (Note: This currently applies to the
‘double’ dataset only) [default: 1 . . . 1]

The exerciser also allows the MPI decomposition to be explicitly defined:

Parameter Description
dimranks <x>
...<x>

MPI-rank division in each dimension. Note that, if not set, decomposition will be in 1st
dimension only.

32 Chapter 7. Exerciser

h5bench, Release 1.2

7.2 Exerciser Basics

In the simplest case, the Exerciser code will simply write and then read an n-dimensional double-precision dataset in
parallel (with all the necessary HDF5 steps in between). At a minimum, the user must specify the number of dimensions
to use for this dataset (using the numdims flag), and the size of each dimension (using the minels flag). By default,
the maximum number of dimensions allowed by the code is set by MAX_DIM (currently 4, but can be modified easily).
Note that the user is specifying the number of elements to use in each dimension with minels. Therefore, the local
buffer size is the product of the dimension sizes and sizeof(double) (and the global dataset in the file is a product
of the total MPI ranks and the local buffer size). As illustrated in Fig. 1, the mapping of ranks to hyper-slabs in the
global dataset can be specified with the dimranks flag (here, Example 1 is the default decomposition, while Example 2
corresponds to: "dimranks": "2 2"). This flag simply allows the user to list the number of spatial decompositions
in each dimension of the global dataset, and requires that the product of the input to be equal to the total number of
MPI ranks.

Note: Authors:

• Richard J. Zamora (rzamora@anl.gov)

• Paul Coffman (pcoffman@anl.gov)

• Venkatram Vishwanath (venkat@anl.gov)

7.2. Exerciser Basics 33

mailto:rzamora@anl.gov
mailto:pcoffman@anl.gov
mailto:venkat@anl.gov

h5bench, Release 1.2

Fig. 1: Fig. 1 - Illustration of different local-to-global dataset mapping options.

34 Chapter 7. Exerciser

CHAPTER

EIGHT

E3SM

E3SM-IO is the parallel I/O kernel from the E3SM climate simulation model. It makes use of PIO library which is
built on top of PnetCDF.

This benchmark currently has two cases from E3SM, namely F and G cases. The F case uses three unique data decom-
position patterns shared by 388 2D and 3D variables (2 sharing Decomposition 1, 323 sharing Decomposition 2, and
63 sharing Decomposition 3). The G case uses 6 data decompositions shared by 52 variables (6 sharing Decomposition
1, 2 sharing Decomposition 2, 25 sharing Decomposition 3, 2 sharing Decomposition 4, 2 sharing Decomposition 5,
and 4 sharing Decomposition 6).

You can find more information in Parallel-NetCDF GitHub repository.

8.1 Configuration

You can configure the ES3M-IO benchmark with the following options. Notice that if you use the configuration.
json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the
options you provide in the JSON file. For standalone usage of this benchmark, you can refer to E3SM-IO repository.

Parameter Description
k Keep the output files when program exits
x I/O strategy to write (canonical, log, and blob)
a I/O library name to perform write operation (hdf5, hdf5_log, hdf5_md)
r Number of records/time steps for F case h1 file
o Enable write performance evaluation
netcdf Define the HDF5 compression algorithm to use

Warning: h5bench temporarily only supports -x blob and -a hdf5. If you set other options, they will be
overwritten to the supported version.

35

https://github.com/Parallel-NetCDF/E3SM-IO

h5bench, Release 1.2

8.1.1 JSON Configuration (recomended)

To run an instance of AMReX HDF5 benchmark you need to include the following in the benchmarks property of
your configuration.json file:

{
"benchmark": "e3sm",
"file": "coisa.h5",
"configuration": {

"k": "",
"x": "blob",
"a": "hdf5",
"r": "25",
"o": "ON",
"netcdf": "../../e3sm/datasets/f_case_866x72_16p.nc"

}
}

36 Chapter 8. E3SM

CHAPTER

NINE

WAYS TO CONTRIBUTE

We appreciate your interest in h5bench, and thank you for taking the time to contribute!

We have compiled a set of instructions to help us make h5bench even better.

9.1 Reporting bugs

You can open a new issue using our GitHub issue tracker. If you run into an issue, please search first to ensure the issue
has not been reported before. Open a new issue only if you have not found anything similar to your issue. Please, try
to provide as much information as possible to reproduce your bug quickly.

9.2 Suggesting enhancements

You can use our GitHub issue tracker to describe your proposed feature. Please, provide the necessary context, covering
why it is needed and what problem does it solve.

9.3 Adding new benchmarks

We provide a set of instructions on how to add new benchmarks to the h5bench Benchmarking Suite. However, please
notice that you might require some changes depending on how your benchmark work. You can contribute in two ways:

• Adding existing benchmarks as submodules: We plan to support only the version included in the original PR,
based on its commit hash. Updates on the submodule require the contributor’s help to ensure we can smoothly
upgrade the available version without breaking existing features (both in the benchmark and in h5bench).

• Adding newly developed benchmarks: The community may perform maintenance, requiring you to provide
comprehensive documentation (in code and usage) and examples to understand the benchmark module.

9.3.1 Example

To illustrate how you can add a new benchmark using the submodule aprroach we will use AMReX:

1. You need to include the AMReX repository as a submodule:

git submodule add https://github.com/AMReX-Codes/amrex amrex

2. For this benchmark, we need some libraries to be compiled and available as well, so we will need to modify our
CMakeLists.txt, so it builds that subdirectory:

37

https://github.com/hpc-io/h5bench/issues/new/choose
https://github.com/hpc-io/h5bench/issues/new/choose

h5bench, Release 1.2

set(AMReX_HDF5 YES)
set(AMReX_PARTICLES YES)
set(AMReX_MPI_THREAD_MULTIPLE YES)
add_subdirectory(amrex)

3. AMReX comes with several other benchmarks. Still, since we are only interested in the HDF5 one, we will only
compile that code. For that, we will need to add the following to our CMakeLists.txt. This is based on how
that benchmark is normally compiled within AMReX.

set(amrex_src amrex/Tests/HDF5Benchmark/main.cpp)
add_executable(h5bench_amrex ${amrex_src})

4. Be sure to follow the convention of naming the executable as h5bench_ plus the benchmark name, e.g.
h5bench_amrex.

5. If you are going to provide support for the HDF5 async VOL connector with explicit implementation (which
require changes in the original code), make sure you link the required libraries (asynchdf5 and h5async):

if(WITH_ASYNC_VOL)
set(AMREX_USE_HDF5_ASYNC YES)
target_link_libraries(h5bench_amrex hdf5 z m amrex asynchdf5 h5async MPI::MPI_C)

else()
target_link_libraries(h5bench_amrex hdf5 z m amrex MPI::MPI_C)

endif()

6. The last step is to update the h5bench Python-based script to handle the new benchmark. On the top of the file,
add the path of your benchmark:

H5BENCH_AMREX = 'h5bench_amrex'

Update the run() function that iterates over the benchmarks property list defined by the user in the configuration.
json file to accept the new benchmark name:

elif name == 'amrex':
self.run_amrex(id, benchmark[name], setup['vol'])

You then need to define the run_ function for the benchmark you’re adding. The most important part is translating the
configuration defined in the configuration.json file into a format accepted by your benchmark (e.g., a file, a JSON,
command line). For AMReX, it requires an amrex.ini file with key-value configurations defined in the format key
= value, one per line:

Create the configuration file for this benchmark
with open(configuration_file, 'w+') as f:

for key in configuration:
f.write('{} = {}\n'.format(key, configuration[key]))

f.write('directory = {}\n'.format(file))

If you plan to support the HDF5 async VOL connector, make sure you can enable_vol() and disable_vol() at the
beginning and end of this run_ function.

Here you can check an example of the complete run_amrex function:

def run_amrex(self, id, setup, vol):
"""Run the AMReX benchmark."""

(continues on next page)

38 Chapter 9. Ways to contribute

h5bench, Release 1.2

(continued from previous page)

self.enable_vol(vol)

try:
start = time.time()

file = '{}/{}'.format(self.directory, setup['file'])
configuration = setup['configuration']

configuration_file = '{}/{}/amrex.ini'.format(self.directory, id)

Create the configuration file for this benchmark
with open(configuration_file, 'w+') as f:

for key in configuration:
f.write('{} = {}\n'.format(key, configuration[key]))

f.write('directory = {}\n'.format(file))

command = '{} {} {}'.format(
self.mpi,
self.H5BENCH_AMREX,
configuration_file

)

self.logger.info(command)

Make sure the command line is in the correct format
arguments = shlex.split(command)

stdout_file_name = 'stdout'
stderr_file_name = 'stderr'

with open(stdout_file_name, mode='w') as stdout_file, open(stderr_file_name,␣
→˓mode='w') as stderr_file:

s = subprocess.Popen(arguments, stdout=stdout_file, stderr=stderr_file,␣
→˓env=self.vol_environment)

sOutput, sError = s.communicate()

if s.returncode == 0:
self.logger.info('SUCCESS')

else:
self.logger.error('Return: %s (check %s for detailed log)', s.returncode,

→˓ stderr_file_name)

if self.abort:
self.logger.critical('h5bench execution aborted upon first error')

exit(-1)

end = time.time()

self.logger.info('Runtime: {:.7f} seconds (elapsed time, includes allocation␣
→˓wait time)'.format(end - start))

(continues on next page)

9.3. Adding new benchmarks 39

h5bench, Release 1.2

(continued from previous page)

except Exception as e:
self.logger.error('Unable to run the benchmark: %s', e)

self.disable_vol(vol)

7. Make sure you provide some sample JSON configuration files in the configurations directory.

Please, feel free to reach us if you have questions!

9.4 Testing

h5bench constantly receives updates and improvements. If you can run the latest version, please consider helping us
by reporting your findings, including bugs and performance regressions. Running the benchmarks contained in the
h5bench Benchmarking Suite with different configurations and platforms helps us a lot in making it more robust by
quickly identifying and solving issues.

40 Chapter 9. Ways to contribute

CHAPTER

TEN

COPYRIGHT

H5bench: a benchmark suite for parallel HDF5 (H5bench) Copyright (c) 2021, The Regents of the University of Cal-
ifornia, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S.
Dept. of Energy) and North Carolina State University. All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Intellectual
Property Office at IPO@lbl.gov.

Attention: This Software was developed under funding from the U.S. Department of Energy and the U.S. Gov-
ernment consequently retains certain rights. As such, the U.S. Government has been granted for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute
copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit others to
do so.

41

mailto:IPO@lbl.gov

h5bench, Release 1.2

42 Chapter 10. Copyright

CHAPTER

ELEVEN

LICENSE

H5bench: a benchmark suite for parallel HDF5 (H5bench) Copyright (c) 2021, The Regents of the University of Cal-
ifornia, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S.
Dept. of Energy) and North Carolina State University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy,
North Carolina State University nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

LAWRENCE BERKELEY NATIONAL LABORATORY Software: PIOK: Parallel I/O Kernels Developers: Suren
Byna and Mark Howison

* License Agreement * ” PIOK - Parallel I/O Kernels - VPIC-IO, VORPAL-IO, and GCRM-IO, Copyright (c) 2015,
The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.”

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

43

h5bench, Release 1.2

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor
the names of its contributors may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

44 Chapter 11. License

	Build Instructions
	Build with CMake (recommended)
	Dependency and environment variable settings
	Use system provided by HDF5
	Use your own installed HDF5

	Compile with CMake
	Build with HDF5 ASYNC VOL connector support

	Build with Spack

	Running h5bench
	h5bench (recommended)
	Configuration
	MPI
	VOL
	Directory
	File System
	Benchmarks
	Cori

	Manual Execution

	Read / Write
	Configuration
	READ Settings (h5bench_read)
	Asynchronous Settings
	Compression Settings
	Collective Operation Settings
	CSV Settings

	Supported Patterns
	Supported Write Patterns (h5bench_write)
	Supported Read Patterns (h5bench_read)

	Understanding the Output
	Known Issues

	Metadata Stress
	Configuration
	JSON Configuration (recomended)
	Standalone Configuration

	AMReX
	Configuration
	JSON Configuration (recomended)
	HDF5 ASYNC VOL Connector
	Standalone Configuration

	OpenPMD
	Configuration
	JSON Configuration (recomended)
	Standalone Configuration

	Exerciser
	Configuration
	Required
	Optional

	Exerciser Basics

	E3SM
	Configuration
	JSON Configuration (recomended)

	Ways to contribute
	Reporting bugs
	Suggesting enhancements
	Adding new benchmarks
	Example

	Testing

	Copyright
	License

