

h5bench

h5bench is a suite of parallel I/O benchmarks or kernels representing I/O patterns that are commonly used in HDF5 applications on high performance computing systems. H5bench measures I/O performance from various aspects, including the I/O overhead, observed I/O rate, etc.

These are the benchmarks and kernels currently available in h5bench:

	Benchmark

	Name

	SYNC

	ASYNC VOL

	h5bench write

	h5bench_write

	✅

	✅

	h5bench read

	h5bench_read

	✅

	✅

	GPU-IO (CUDA)

	h5bench_read_cuda h5bench_write_cuda

	✅

	⬜

	Metadata Stress

	h5bench_hdf5_iotest

	✅

	⬜

	AMReX

	h5bench_amrex

	✅

	✅

	Exerciser

	h5bench_exerciser

	✅

	⬜

	OpenPMD (write)

	h5bench_openpmd_write

	✅

	⬜

	OpenPMD (read)

	h5bench_openpmd_read

	✅

	⬜

	E3SM-IO

	h5bench_e3sm

	✅

	⬜

Getting Started

	Build Instructions
	Build with CMake (recommended)

	Build with Spack

	Running h5bench
	h5bench (recommended)

	Manual Execution

Benchmarks

	Read / Write
	Configuration

	Supported Patterns

	Understanding the Output

	Known Issues

	Metadata Stress
	Configuration

	AMReX
	Configuration

	OpenPMD
	Configuration

	Exerciser
	Configuration

	Exerciser Basics

	E3SM
	Configuration

	GPU-IO
	Configuration

	Understanding the Output

Contribute

	Ways to contribute
	Reporting bugs

	Suggesting enhancements

	Adding new benchmarks

	Testing

Legal

	Copyright

	License

Build Instructions

Build with CMake (recommended)

First, clone the h5bench GitHub repository and ensure you are cloning the submodules:

git clone --recurse-submodules https://github.com/hpc-io/h5bench

If you are upadting your h5bench, ensure you have the latest submodules that could be included in new releases:

git submodule update --init

Dependency and environment variable settings

H5bench depends on MPI and parallel HDF5.

Use system provided by HDF5

For instance on the Cori system at NERSC:

module load cray-hdf5-parallel

You can also load any paralel HDF5 provided on your system, and you are good to go.

Use your own installed HDF5

Make sure to unload any system provided HDF5 version:, and set an environment variable to specify the HDF5 install path:

export HDF5_HOME=/path/to/your/hdf5/installation

It should point to a path that contains the include/, lib/, and bin/ subdirectories.

Enable with GPU transfers with CUDA

You can test GPU memory transfers bandwidth if you compile with CUDA support.

For instance on Summit system at OLCF:

module load cuda

Compile with CMake

In the source directory of your cloned h5bench repository, run the following:

mkdir build
cd build

cmake ..

make
make install

By default, h5bench will only compile the base write and read benchmarks. To enable the additional benchmarks, you need to explicitly enable them before building h5bench. You can also enable all the benchmarks with -DH5BENCH_ALL=ON. Notice that some of them have additional dependencies.

	Benchmark

	Name

	Build

	h5bench write

	h5bench_write

	Always

	h5bench read

	h5bench_read

	Always

	Metadata Stress

	h5bench_hdf5_iotest

	-DH5BENCH_METADATA=ON

	AMReX

	h5bench_amrex

	-DH5BENCH_AMREX=ON

	Exerciser

	h5bench_exerciser

	-DH5BENCH_EXERCISER=ON

	OpenPMD (write)

	h5bench_openpmd_write

	-DH5BENCH_OPENPMD=ON

	OpenPMD (read)

	h5bench_openpmd_read

	-DH5BENCH_OPENPMD=ON

	E3SM-IO

	h5bench_e3sm

	-DH5BENCH_E3SM=ON

	GPU-IO (cuda)

	h5bench_cuda_read h5bench_cuda_write

	-DH5BENCH_CUDA=ON

Warning

If you want to specify the installation directory, you can pass -DCMAKE_INSTALL_PREFIX to cmake. If you are not installing it, make sure when you run h5bench, you update your environment variables to include the build directory. Otherwise, h5bench will not be able to find all the benchmarks.

Build with HDF5 ASYNC VOL connector support

To run _async benchmarks, you need the develop branch of both HDF5 and ASYNC-VOL. When building h5bench you need to specify the -DWITH_ASYNC_VOL:BOOL=ON option and have already compiled the VOL connector in the $ASYNC_VOL directory:

mkdir build
cd build

cmake .. -DWITH_ASYNC_VOL=ON -DCMAKE_C_FLAGS="-I/$ASYNC_VOL/src -L/$ASYNC_VOL/src"

make
make install

h5bench will automatically set the environment variables required to run the asynchronous versions, as long as you specify them in your JSON configuration file. However, if you run the benchmarks manually, you will need to set the following environment variables:

export HDF5_HOME="$YOUR_HDF5_DEVELOP_BRANCH_BUILD/hdf5"
export ASYNC_HOME="$YOUR_ASYNC_VOL/src"

export HDF5_VOL_CONNECTOR="async under_vol=0;under_info={}"
export HDF5_PLUGIN_PATH="$ASYNC_HOME"

Linux
export LD_LIBRARY_PATH="$HDF5_HOME/lib:$ASYNC_HOME"
MacOS
export DYLD_LIBRARY_PATH="$HDF5_HOME/lib:$ASYNC_HOME"

Build with Spack

You can also use Spack to install h5bench:

spack install h5bench

There are some variants available as described bellow:

CMakePackage: h5bench

Description:
 A benchmark suite for measuring HDF5 performance.

Homepage: https://github.com/hpc-io/h5bench

Preferred version:
 1.2 [git] https://github.com/hpc-io/h5bench.git at commit 866af6777573d20740d02acc47a9080de093e4ad

Safe versions:
 develop [git] https://github.com/hpc-io/h5bench.git on branch develop
 1.2 [git] https://github.com/hpc-io/h5bench.git at commit 866af6777573d20740d02acc47a9080de093e4ad
 1.1 [git] https://github.com/hpc-io/h5bench.git at commit 1276530a128025b83a4d9e3814a98f92876bb5c4
 1.0 [git] https://github.com/hpc-io/h5bench.git at commit 9d3438c1bc66c5976279ef203bd11a8d48ade724
 latest [git] https://github.com/hpc-io/h5bench.git on branch master

Deprecated versions:
 None

Variants:
 Name [Default] When Allowed values Description
 =========================== ======= ==================== ==================================

 all [off] @1.2: on, off Enables all h5bench benchmarks
 amrex [off] @1.2: on, off Enables AMReX benchmark
 build_type [RelWithDebInfo] -- Debug, Release, CMake build type
 RelWithDebInfo,
 MinSizeRel
 e3sm [off] @1.2: on, off Enables E3SM benchmark
 exerciser [off] @1.2: on, off Enables exerciser benchmark
 ipo [off] -- on, off CMake interprocedural optimization
 metadata [off] @1.2: on, off Enables metadata benchmark
 openpmd [off] @1.2: on, off Enables OpenPMD benchmark

Build Dependencies:
 cmake hdf5 mpi parallel-netcdf

Link Dependencies:
 hdf5 mpi parallel-netcdf

Run Dependencies:
 None

Warning

Current h5bench versions in Spack do not have support for the HDF5 VOL async/cache connectors yet.

Running h5bench

h5bench (recommended)

We provide a single script you can use to run the benchmarks available in the h5bench Benchmarking Suite.
You can combine multiple benchmarks into a workflow with distinct configurations.
If you prefer, you can also manually run each benchmark in h5bench. For more details, refer to the Manual Execution section.

usage: h5bench [-h] [--abort-on-failure] [--debug] [--validate-mode] setup

H5bench: a Parallel I/O Benchmark Suite for HDF5:

positional arguments:
 setup JSON file with the benchmarks to run

optional arguments:
 -h, --help show this help message and exit
 --abort-on-failure Stop h5bench if a benchmark failed
 --debug Enable debug mode
 --validate-mode Validated if the requested mode (async/sync) was run

You need to provide a JSON file with the configurations you want to run.
If you’re using h5bench, you should not call mpirun, srun, or any other parallel launcher on your own.
Refer to the manual execution section if you want to follow that approach instead.
The main script will handle setting and unsetting environment variables, launching the benchmarks with the provided configuration and HDF5 VOL connectors.

./h5bench configuration.json

If you run it with the --debug option, h5bench will also print log messages stdout. The default behavior is to store it in a file.

Warning

Make sure you do not call srun, mpirun, etc directly but instead define that in the JSON configuration file. You should always call h5bench directly.

Configuration

The JSON configuration file has five main properties: mpi, vol, file-system, directory, benchmarks. All should be defined, even if empty.

MPI

You can set the MPI launcher you want to use, e.g. mpirun, mpiexec, and srun,
and provide the number of processes you want to use.
For other methods or a fine grain control on the job configuration, you can define the configuration properties that h5bench will use to launch the experiments using the command property you provided. If the configuration option is defined, h5bench will ignore the ranks property.

"mpi": {
 "command": "mpirun",
 "ranks": "4",
 "configuration": "-np 8 --oversubscribe"
}

VOL

You can use HDF5 VOL connectors (async, cache, etc) for h5bench_write and h5bench_read.
Because some benchmarks inside h5bench do not have support for VOL connectors yet, you need to provide the necessary information in the configuration file to handle the VOL setup during runtime.

"vol": {
 "library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/install/lib:/hdf5-install/install:",
 "path": "/vol-async/src",
 "connector": "async under_vol=0;under_info={}"
}

You should provide the absolute path for all the libraries required by the VOL connector using the library property, the path of the VOL connector, and the configuration in connector. The provided example depicts how to configure the HDF5 VOL async connector.

Directory

h5bench will create a directory for the given execution workflow, where it will store all the generated files and logs.
Additional options such as data striping for Lustre, if configured, will be applied to this directory.

"directory": "hdf5-output-directory"

File System

You can use this property to configure some file system options. For now, you can use it for Lustre to define the striping count and size that should be applied to the directory that will store all the generated data from h5bench.

"file-system": {
 "lustre": {
 "stripe-size": "1M",
 "stripe-count": "4"
 }
}

Benchmarks

You can specify which benchmarks h5bench should run using this property, their order, and configuration.
You can choose between: write, write-unlimited, overwrite, append, read, metadata, exerciser, openpmd, amrex, e3sm.

For each pattern of h5bench, you should provide the file and the configuration:

{
 "benchmark": "write",
 "file": "test.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "NUM_PARTICLES": "16 M",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "NO",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
 "NUM_DIMS": "1",
 "DIM_1": "16777216",
 "DIM_2": "1",
 "DIM_3": "1",
 "MODE": "SYNC",
 "CSV_FILE": "output.csv"
 }
}

If you provide the same file name used for a previous write execution, it will read from that file.
This way, you can configure a workflow with multiple interleaving files, e.g., write file-01, write file-02, read file-02, read file-01.

{
 "benchmark": "read": {
 "file": "test.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "NUM_PARTICLES": "16 M",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "NO",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
 "NUM_DIMS": "1",
 "DIM_1": "16777216",
 "DIM_2": "1",
 "DIM_3": "1",
 "MODE": "SYNC",
 "CSV_FILE": "output.csv"
 }
}

For the metadata stress benchmark, file and configuration properties must be defined:

{
 "benchmark": "metadata",
 "file": "hdf5_iotest.h5",
 "configuration": {
 "version": "0",
 "steps": "20",
 "arrays": "500",
 "rows": "100",
 "columns": "200",
 "process-rows": "2",
 "process-columns": "2",
 "scaling": "weak",
 "dataset-rank": "4",
 "slowest-dimension": "step",
 "layout": "contiguous",
 "mpi-io": "independent",
 "csv-file": "hdf5_iotest.csv"
 }
}

For the exerciser benchmark, you need to provide the required runtime options in the JSON file inside the configuration property.

{
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
}

You can find several samples of configuration file with all the optins in the our [GitHub repository] (https://github.com/hpc-io/h5bench/tree/master/samples). You can also refer to this sample of a complete configuration.json file that defined the workflow of the execution of multiple benchmarks from h5bench Suite:

{
 "mpi": {
 "command": "mpirun",
 "ranks": "4",
 "configuration": "-np 8 --oversubscribe"
 },
 "vol": {
 "library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/install/lib:/hdf5-install/install:",
 "path": "/vol-async/src",
 "connector": "async under_vol=0;under_info={}"
 },
 "file-system": {
 "lustre": {
 "stripe-size": "1M",
 "stripe-count": "4"
 }
 },
 "directory": "full-teste",
 "benchmarks": [
 {
 "benchmark": "e3sm",
 "file": "coisa.h5",
 "configuration": {
 "k": "",
 "x": "blob",
 "a": "hdf5",
 "r": "25",
 "o": "ON",
 "netcdf": "../../e3sm/datasets/f_case_866x72_16p.nc"
 }
 },
 {
 "benchmark": "write",
 "file": "test.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "NUM_PARTICLES": "16 M",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "NO",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
 "NUM_DIMS": "1",
 "DIM_1": "16777216",
 "DIM_2": "1",
 "DIM_3": "1",
 "ASYNC_MODE": "NON",
 "CSV_FILE": "output.csv"
 }
 },
 {
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
 },
 {
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
 },
 {
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
 },
 {
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
 },
 {
 "benchmark": "exerciser",
 "configuration": {
 "numdims": "2",
 "minels": "8 8",
 "nsizes": "3",
 "bufmult": "2 2",
 "dimranks": "8 4"
 }
 },
 {
 "benchmark": "read",
 "file": "test.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "NUM_PARTICLES": "16 M",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "NO",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
 "NUM_DIMS": "1",
 "DIM_1": "16777216",
 "DIM_2": "1",
 "DIM_3": "1",
 "ASYNC_MODE": "NON",
 "CSV_FILE": "output.csv"
 }
 },
 {
 "benchmark": "write",
 "file": "test-two.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "NUM_PARTICLES": "2 M",
 "TIMESTEPS": "20",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "NO",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "1 s",
 "NUM_DIMS": "1",
 "DIM_1": "16777216",
 "DIM_2": "1",
 "DIM_3": "1",
 "ASYNC_MODE": "NON",
 "CSV_FILE": "output.csv"
 }
 },
 {
 "benchmark": "metadata",
 "file": "hdf5_iotest.h5",
 "configuration": {
 "version": "0",
 "steps": "20",
 "arrays": "500",
 "rows": "100",
 "columns": "200",
 "process-rows": "2",
 "process-columns": "2",
 "scaling": "weak",
 "dataset-rank": "4",
 "slowest-dimension": "step",
 "layout": "contiguous",
 "mpi-io": "independent",
 "csv-file": "hdf5_iotest.csv"
 }
 }
]
}

For a description of all the options available in each benchmark, please refer to their entries in the documentation.

When the --debug option is enabled, you can expect an output similar to:

2021-10-25 16:31:24,866 h5bench - INFO - Starting h5bench Suite
2021-10-25 16:31:24,889 h5bench - INFO - Lustre support detected
2021-10-25 16:31:24,889 h5bench - DEBUG - Lustre stripping configuration: lfs setstripe -S 1M -c 4 full-teste
2021-10-25 16:31:24,903 h5bench - INFO - h5bench [write] - Starting
2021-10-25 16:31:24,903 h5bench - INFO - h5bench [write] - DIR: full-teste/504fc233/
2021-10-25 16:31:24,904 h5bench - INFO - Parallel setup: srun --cpu_bind=cores -n 4
2021-10-25 16:31:24,908 h5bench - INFO - srun --cpu_bind=cores -n 4 build/h5bench_write full-teste/504fc233/h5bench.cfg full-teste/test.h5
2021-10-25 16:31:41,670 h5bench - INFO - SUCCESS
2021-10-25 16:31:41,754 h5bench - INFO - Runtime: 16.8505464 seconds (elapsed time, includes allocation wait time)
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [write] - Complete
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [exerciser] - Starting
2021-10-25 16:31:41,755 h5bench - INFO - h5bench [exerciser] - DIR: full-teste/247659d1/
2021-10-25 16:31:41,755 h5bench - INFO - Parallel setup: srun --cpu_bind=cores -n 4
2021-10-25 16:31:41,756 h5bench - INFO - srun --cpu_bind=cores -n 4 build/h5bench_exerciser --numdims 2 --minels 8 8 --nsizes 3 --bufmult 2 2 --dimranks 8 4
2021-10-25 16:31:49,174 h5bench - INFO - SUCCESS
2021-10-25 16:31:49,174 h5bench - INFO - Finishing h5bench Suite

Cori

In Cori you need to load Python and its libraries for the main h5bench script to work. For manual execution of each benchmark that is not required.

module load python

In case you are running on Cori and the benchmark fails with an MPI message indicating no support for multiple threads, make sure you define:

export MPICH_MAX_THREAD_SAFETY="multiple"

Manual Execution

If you prefer, you can execute each benchmark manually. In this scenario, you will be responsible for generating the input configuration file needed for each benchmark in the suite, ensuring it follows the pre-defined format unique for each one.

If you want to use HDF5 VOL connectors or tune the file system configuration, h5bench will not take care of that. Remember that not all benchmarks in the suite have support for VOL connectors yet.

Read / Write

This set of benchmarks contains an I/O kernel developed based on a particle physics simulation’s I/O pattern (VPIC-IO for writing data in a HDF5 file) and on a big data clustering algorithm (BDCATS-IO for reading the HDF5 file VPIC-IO wrote).

Configuration

You can configure the h5bench_write and h5bench_read benchmarks with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

	Parameter

	Description

	MEM_PATTERN

	Options: CONTIG, INTERLEAVED, and STRIDED

	FILE_PATTERN

	Options: CONTIG and STRIDED

	TIMESTEPS

	The number of iterations

	EMULATED_COMPUTE_TIME_PER_TIMESTEP

	Sleeps after each iteration to emulate computation

	NUM_DIMS

	The number of dimensions, valid values are 1, 2 and 3

	DIM_1

	The dimensionality of the source data

	DIM_2

	The dimensionality of the source data

	DIM_3

	The dimensionality of the source data

For MEM_PATTERN, CONTIG represents arrays of basic data types (i.e., int, float, double, etc.); INTERLEAVED represents an array of structure (AOS) where each array element is a C struct; and STRIDED represents a few elements in an array of basic data types that are separated by a constant stride. STRIDED is supported only for 1D arrays.

For FILE_PATTERN, CONTIG represents a HDF5 dataset of basic data types (i.e., int, float, double, etc.); INTERLEAVED represents a dataset of a compound datatype;

For EMULATED_COMPUTE_TIME_PER_TIMESTEP, you must provide the time unit (e.g. 10 s, 100 ms, or 5000us) to ensure correct behavior.

For DIM_2 and DIM_3 if unused, you should set both as 1. Notice that the total number of particles will be given by DIM_1 * DIM_2 * DIM_3. For example, DIM_1=1024, DIM_2=256, DIM_3=1 is a valid setting for a 2D array and it will generate 262144 particles.

A set of sample configuration files can be found in the samples/ diretory in GitHub.

READ Settings (h5bench_read)

	Parameter

	Description

	READ_OPTION

	Options: FULL, PARTIAL, and STRIDED

For the PARTIAL option, the benchmark will read only the first TO_READ_NUM_PARTICLES particles.

Asynchronous Settings

	Parameter

	Description

	MODE

	Options: SYNC or ASYNC

	IO_MEM_LIMIT

	Memory threshold to determine when to execute I/O

	DELAYED_CLOSE_TIMESTEPS

	Groups and datasets will be closed later.

The IO_MEM_LIMIT parameter is optional. Its default value is 0 and it requires ASYNC, i.e., it only works in asynchronous mode. This is the memory threshold used to determine when to actually execute the I/O operations. The actual I/O operations (data read/write) will not be executed until the timesteps associated memory reachs the threshold, or the application run to the end.

For the ASYNC mode to work you must define the necessay HDF5 ASYNC-VOL connector. For more information about it, refer to its documentation [https://hdf5-vol-async.readthedocs.io/en/latest/].

Compression Settings

	Parameter

	Description

	COMPRESS

	YES or NO (optional) enables parralel compression

	CHUNK_DIM_1

	Chunk dimension

	CHUNK_DIM_2

	Chunk dimension

	CHUNK_DIM_3

	Chunk dimension

Compression is only applicable for h5bench_write. It has not effect for h5bench_read. When enabled the chunk dimensions parameters (CHUNK_DIM_1, CHUNK_DIM_2, CHUNK_DIM_3) are required. The chunk dimension settings should be compatible with the data dimensions, i.e., they must have the same rank of dimensions, and chunk dimension size cannot be greater than data dimension size. Extra chunk dimensions have no effect and should be set to 1.

Warning

There is a known bug on HDF5 parallel compression that could cause the system run out of memory when the chunk amount is large (large number of particle and very small chunk sizes). On Cori Hasswell nodes, the setting of 16M particles per rank, 8 nodes (total 256 ranks), 64 * 64 chunk size will crash the system by runing out of memory, on single nodes the minimal chunk size is 4 * 4.

Collective Operation Settings

	Parameter

	Description

	COLLECTIVE_DATA

	Enables collective operation (default is NO)

	COLLECTIVE_METADATA

	Enables collective HDF5 metadata (default is NO)

Both COLLECTIVE_DATA and COLLECTIVE_METADATA parameters are optional.

CSV Settings

Performance results will be written to this file and standard output once a file name is provided.

	Parameter

	Description

	CSV_FILE

	CSV file name to store benchmark results

Supported Patterns

Attention

Not every pattern combination is covered by the benchmark. Supported benchmark parameter settings are listed below.

Supported Write Patterns (h5bench_write)

The I/O patterns include array of structures (AOS) and structure of arrays (SOA) in memory as well as in file. The array dimensions are 1D, 2D, and 3D for the write benchmark. This defines the write access pattern, including CONTIG (contiguous), INTERLEAVED and STRIDED for the source (the data layout in the memory) and the destination (the data layout in the resulting file). For example, MEM_PATTERN=CONTIG and FILE_PATTERN=INTERLEAVED is a write pattern where the in-memory data layout is contiguous (see the implementation of prepare_data_contig_2D() for details) and file data layout is interleaved by due to its compound data structure (see the implementation of data_write_contig_to_interleaved() for details).

	4 patterns for both 1D and 2D array write (NUM_DIMS=1 or NUM_DIMS=2)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'INTERLEAVED'

'MEM_PATTERN': 'INTERLEAVED'
'FILE_PATTERN': 'CONTIG'

'MEM_PATTERN': 'INTERLEAVED'
'FILE_PATTERN': 'INTERLEAVED'

	1 pattern for 3D array (NUM_DIMS=3)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'

	1 strided pattern for 1D array (NUM_DIMS=1)

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'STRIDED'

Supported Read Patterns (h5bench_read)

	1 pattern for 1D, 2D and 3D read (NUM_DIMS=1 or NUM_DIMS=2)

Contiguously read through the whole data file:

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'
'READ_OPTION': 'FULL'

	2 patterns for 1D read

Contiguously read the first TO_READ_NUM_PARTICLES elements:

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'CONTIG'
'READ_OPTION': 'PARTIAL'

'MEM_PATTERN': 'CONTIG'
'FILE_PATTERN': 'STRIDED'
'READ_OPTION': 'STRIDED'

Understanding the Output

The metadata and raw data operations are timed separately, and the overserved time and I/O rate are based on the total time.

Sample output of h5bench_write:

================== Performance results =================
Total emulated compute time 4000 ms
Total write size = 2560 MB
Data preparation time = 739 ms
Raw write time = 1.012 sec
Metadata time = 284.990 ms
H5Fcreate() takes 4.009 ms
H5Fflush() takes 14.575 ms
H5Fclose() takes 4.290 ms
Observed completion time = 6.138 sec
Raw write rate = 2528.860 MB/sec
Observed write rate = 1197.592 MB/sec

Sample output of h5bench_read:

================= Performance results =================
Total emulated compute time = 4 sec
Total read size = 2560 MB
Metadata time = 17.523 ms
Raw read time = 1.201 sec
Observed read completion time = 5.088 sec
Raw read rate = 2132.200 MB/sec
Observed read rate = 2353.605225 MB/sec

Known Issues

Warning

In Cori/NERSC or similar platforms that use Cray-MPICH library, if you encouter a failed assertion regarding support for MPI_THREAD_MULTIPLE you should define the following environment variable:

export MPICH_MAX_THREAD_SAFETY="multiple"

Warning

If you’re trying to run the benchmark with the HDF5 VOL ASYNC connector in MacOS and are getting segmentation fault (from ABT_thread_create), please try to set the following environment variable:

export ABT_THREAD_STACKSIZE=100000

Metadata Stress

The Metadata Stress benchmark (h5bench_hdf5_iotest) is a simple I/O performance tester for HDF5. Its purpose is to assess the performance variability of a set of logically equivalent HDF5 representations of a common pattern. The test repeatedly writes (and reads) in parallel a set of 2D array variables in a tiled fashion, over a set of time steps. For more information referer to HDF Group GitHub repository [https://github.com/HDFGroup/hdf5-iotest]. We modified this benchmark slightly so to be able to specify the config file location, everything else remains untouched.

Configuration

You can configure the Metadata Stress test with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

	Parameter

	Description

	steps

	Number of steps

	arrays

	Number of arrays

	rows

	Total number of array rows for strong scaling. Number of array rows per block for weak scaling.

	columns

	Total number of array columns for strong scaling. Number of array columns per block for weak scaling.

	process-rows

	Number of MPI-process rows: rows % proc-rows == 0 for strong scaling

	process-columns

	Number of MPI-process columns: columns % proc-columns == 0 for strong scaling

	scaling

	Scaling ([weak, strong])

	dataset-rank

	Rank of the dataset(s) in the file ([2, 3, 4])

	slowest-dimension

	Slowest changing dimension ([step, array])

	layout

	HDF5 dataset layout ([contiguous, chunked]

	mpi-io

	MPI I/O mode ([independent, collective])

	hdf5-file

	HDF5 output file name

	csv-file

	CSV results file name

JSON Configuration (recomended)

To run an instance of Metadata Stress Test benchmark you need to include the following in the benchmarks property of your configuration.json file:

{
 "benchmark": "metadata",
 "file": "hdf5_iotest.h5",
 "configuration": {
 "version": "0",
 "steps": "20",
 "arrays": "500",
 "rows": "100",
 "columns": "200",
 "process-rows": "2",
 "process-columns": "2",
 "scaling": "weak",
 "dataset-rank": "4",
 "slowest-dimension": "step",
 "layout": "contiguous",
 "mpi-io": "independent",
 "csv-file": "hdf5_iotest.csv"
 }
}

Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the h5bench_hdf5_iotest executable.

[DEFAULT]
version = 0
steps = 20
arrays = 500
rows = 100
columns = 200
process-rows = 1
process-columns = 1
scaling = weak
dataset-rank = 4
slowest-dimension = step
layout = contiguous
mpi-io = independent
hdf5-file = hdf5_iotest.h5
csv-file = hdf5_iotest.csv

AMReX

AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications.

You can find more information in AMReX-Codes GitHub repository [https://amrex-codes.github.io/amrex].

Configuration

You can configure the AMReX HDF5 benchmark with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

	Parameter

	Description

	ncells

	Domain size

	max_grid_size

	The maximum allowable size of each subdomain (used for parallel decomposal)

	nlevs

	Number of levels

	ncomp

	Number of components in the multifabs

	nppc

	Number of particles per cell

	nplotfile

	Number of plot files to write

	nparticlefile

	Number of particle files to write

	sleeptime

	Time to sleep before each write

	restart_check

	Whether to check the correctness of checkpoint/restart

	grids_from_file

	Enable AMReX to read grids from file

	ref_ratio_file

	Refinement ratios for different AMReX refinement levels

	hdf5compression

	Define the HDF5 compression algorithm to use

JSON Configuration (recomended)

To run an instance of AMReX HDF5 benchmark you need to include the following in the benchmarks property of your configuration.json file:

{
 "benchmark": "amrex",
 "file": "amrex.h5",
 "configuration": {
 "ncells": "64",
 "max_grid_size": "8",
 "nlevs": "1",
 "ncomp": "6",
 "nppc": "2",
 "nplotfile": "2",
 "nparticlefile": "2",
 "sleeptime": "2",
 "restart_check": "1",
 "hdf5compression": "ZFP_ACCURACY#0.001"
 }
}

To read grids from file you need to set: grids_from_file, nlevels, and ref_ratio_file.

{
 "benchmark": "amrex",
 "file": "amrex.h5",
 "configuration": {
 "ncells": "64",
 "max_grid_size": "8",
 "nlevs": "1",
 "ncomp": "6",
 "nppc": "2",
 "nplotfile": "2",
 "nparticlefile": "2",
 "sleeptime": "2",
 "restart_check": "1",
 "hdf5compression": "ZFP_ACCURACY#0.001",
 "nlevs": "3",
 "grids_from_file": "1",
 "ref_ratio_file": "4 2"
 }
}

HDF5 ASYNC VOL Connector

AMReX supports the HDF5 ASYNC VOL connector [https://github.com/hpc-io/vol-async]. To enable it, you should specify in the vol property of you configuration.json file: the required library paths, the VOL ASYNC source path, and the connector setup.

"vol": {
 "library": "/vol-async/src:/hdf5-async-vol-register-install/lib:/argobots/install/lib:/hdf5-install/install:",
 "path": "/vol-async/src",
 "connector": "async under_vol=0;under_info={}"
}

Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the h5bench_amrex executable.

ncells = 64
max_grid_size = 8
nlevs = 1
ncomp = 6
nppc = 2
nplotfile = 2
nparticlefile = 2
sleeptime = 2
restart_check = 1

Uncomment to read grids from file
nlevs = 3
grids_from_file = 1
ref_ratio_file = 4 2

Uncomment to enable compression
hdf5compression=ZFP_ACCURACY#0.001

directory = .

OpenPMD

OpenPMD is an open meta-data schema that provides meaning and self-description for data sets in science and engineering.

The openPMD-api library provides a reference API for openPMD data handling.
In the h5bench Benchmarking Suite we provide support for the write and read parallel benchmarks with HDF5 backend.
You can find more information in OpenPMD documentation.

Configuration

You can configure the openPMD write HDF5 benchmark with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

	Parameter

	Description

	operation

	Operation: write or read

	fileLocation

	Directory where the file will be written to or read from

When running with the write operation, you have to define the following options:

dim Number of dimensions (1, 2, or 3)
balanced Should it use a balanced load? (true or false)
ratio Particle to mesh ratio
steps Number of iteration steps
minBlock Meshes are viewed as grid of mini blocks
grid Grid based on the mini block

When running with the read operation, you have to define the pattern:

pattern Read access pattern

The minBlock and grid parameters must include the values for each of the dim dimensions. For example, if "dim": "3" (for a 3D mesh) minBlock should contain three values, one for each dimenseion "16 32 32" and grid (which is based on the mini block) should also contain three values, one for each dimension "32 32 16".

For the pattern attribute for read you can chose:

	m: metadata onlune

	sx: slice of the ‘rho’ mesh in the x-axis (eg. x=0)

	sy: slice of the ‘rho’ mesh in the y-axis (eg. y=0)

	sz: slice of the ‘rho’ mesh in the z-axis (eg. z=0)

	fx: slice of the 3D magnetic field in the x-axis (eg. x=0)

	fy: slice of the 3D magnetic field in the y-axis (eg. y=0)

	fz: slice of the 3D magnetic field in the z-axis (eg. z=0)

JSON Configuration (recomended)

To run an instance of openPMD HDF5 benchmark you need to include the following in the benchmarks property of your configuration.json file:

{
 "benchmark": "openpmd",
 "configuration": {
 "operation": "write",
 "dim": "3",
 "balanced": "true",
 "ratio": "1",
 "steps": "1",
 "minBlock": "8 16 16",
 "grid": "16 16 8"
 }
},
{
 "benchmark": "openpmd",
 "configuration": {
 "operation": "read",
 "dim": "3",
 "balanced": "true",
 "ratio": "1",
 "steps": "1",
 "minBlock": "8 16 16",
 "grid": "16 16 8"
 }
}

Standalone Configuration

For standalone usage of this benchmark, this is the observed input configuration you should provide to the h5bench_openpmd_write.

dim=3
balanced=true
ratio=1
steps=10
minBlock=16 32 32
grid=32 32 16

For the h5bench_openpmd_read, you need to provide two arguments: the file prefix and the pattern.

Exerciser

Attention

For more-detailed instructions of how to build and run the exerciser code on specific machines (at ALCF), see the Exerciser/BGQ/VESTA_XL/README.md and Exerciser/BGQ/THETA/README.md directories of this repository. Those README files also include instructions for building the CCIO and develop versions of HDF5 for use with this benchmark.

The HDF5 Exerciser Benchmark creates an HDF5 use case with some ideas/code borrowed from other benchmarks (namely IOR, VPICIO and FLASHIO). Currently, the algorithm does the following in parallel over all MPI ranks:

	For each rank, a local data buffer (with dimensions given by numdims is initialized with minNEls double-precision elements in each dimension

	If the derivedtype flag is used, a second local dataset is also specified with a derived data type a-signed to each element

	For a given number of iterations (hardcoded as NUM_ITERATIONS):

	Open a file, create a top group, set the MPI-IO transfer property, and (optionally) add a simple attribute string to the top group

	Create memory and file dataspaces with hyperslab selections for simple rank-ordered offsets into the file. The rshift option can be used to specify the number of rank positions to shift the write position in the file (the read will be shifted twice this amount to avoid client-side caching effects

	Write the data and close the file

	Open the file, read in the data, and check correctness (if dataset is small enough)

	Close the dataset (but not the file)

	If the second (derived-type) data set is specified: (1) create a derived type, (2) open a new data set with the same number of elements and dimension, (3) write the data and (4) close everything

	Each dimension of curNEls is then multiplied by each dimension of bufMult, and the previous steps (the loop over NUM_ITERATIONS) are repeated. This outer loop over local buffer sizes is repeated a total of nsizes times

Configuration

You can configure the h5bench_write and h5bench_read benchmarks with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

Required

	Parameter

	Description

	numdims <x>

	Dimension of the datasets to write to the HDF5 file

	minels <x> ... <x>

	Min number of double elements to write in each dim of the dataset (one value for each dimension)

Optional

	Parameter

	Description

	nsizes <x>

	How many buffer sizes to use (Code will start with minbuf and loop through nsizes iterations, with the buffer size multiplied by bufmult in each dim, for each iteration)

	bufmult <x> ... <x>

	Constant, for each dimension, used to multiply the buffer [default: 2 2 …]

	metacoll

	Whether to set meta data collective usage [default: False]

	derivedtype

	Whether to create a second data set containing a derived type [default: False]

	addattr

	Whether to add attributes to group 1 [default: False]

	indepio

	Whether to use independant I/O (not MPI-IO) [default: False]

	keepfile

	Whether to keep the file around after the program ends for futher analysis, otherwise deletes it [default: False]

	usechunked

	Whether to chunk the data when reading/writing [default: False]

	maxcheck <x>

	Maximum buffer size (in bytes) to validate. Note that all buffers will be vaidated if this option is not set by this command-line argument [default: Inf]

	memblock <x>

	Define the block size to use in the local memory buffer (local buffer is always 1D for now, Note: This currently applies to the ‘double’ dataset only) [default: local buffer size]

	memstride <x>

	Define the stride of the local memory buffer (local buffer is always 1D for now, Note: This currently applies to the ‘double’ dataset only) [default: local buffer size]

	fileblocks <x> ...<x>

	Block sizes to use in the file for each dataset dimension (Note: This currently applies to the ‘double’ dataset only) [default: 1 … 1]

	filestrides <x> ...<x>

	Stride dist. to use in the file for each dataset dimension (Note: This currently applies to the ‘double’ dataset only) [default: 1 … 1]

The exerciser also allows the MPI decomposition to be explicitly defined:

	Parameter

	Description

	dimranks <x> ...<x>

	MPI-rank division in each dimension. Note that, if not set, decomposition will be in 1st dimension only.

Exerciser Basics

In the simplest case, the Exerciser code will simply write and then read an n-dimensional double-precision dataset in parallel (with all the necessary HDF5 steps in between). At a minimum, the user must specify the number of dimensions to use for this dataset (using the numdims flag), and the size of each dimension (using the minels flag). By default, the maximum number of dimensions allowed by the code is set by MAX_DIM (currently 4, but can be modified easily). Note that the user is specifying the number of elements to use in each dimension with minels. Therefore, the local buffer size is the product of the dimension sizes and sizeof(double) (and the global dataset in the file is a product of the total MPI ranks and the local buffer size). As illustrated in Fig. 1, the mapping of ranks to hyper-slabs in the global dataset can be specified with the dimranks flag (here, Example 1 is the default decomposition, while Example 2 corresponds to: "dimranks": "2 2"). This flag simply allows the user to list the number of spatial decompositions in each dimension of the global dataset, and requires that the product of the input to be equal to the total number of MPI ranks.

[image: Fig. 1 - Illustration of different local-to-global dataset mapping options.]

Fig. 1 - Illustration of different local-to-global dataset mapping options.

Note

Authors:

	Richard J. Zamora (rzamora@anl.gov)

	Paul Coffman (pcoffman@anl.gov)

	Venkatram Vishwanath (venkat@anl.gov)

E3SM

E3SM-IO is the parallel I/O kernel from the E3SM climate simulation model. It makes use of PIO library which is built on top of PnetCDF.

This benchmark currently has two cases from E3SM, namely F and G cases. The F case uses three unique data decomposition patterns shared by 388 2D and 3D variables (2 sharing Decomposition 1, 323 sharing Decomposition 2, and 63 sharing Decomposition 3). The G case uses 6 data decompositions shared by 52 variables (6 sharing Decomposition 1, 2 sharing Decomposition 2, 25 sharing Decomposition 3, 2 sharing Decomposition 4, 2 sharing Decomposition 5, and 4 sharing Decomposition 6).

You can find more information in Parallel-NetCDF GitHub repository [https://github.com/Parallel-NetCDF/E3SM-IO].

Configuration

You can configure the ES3M-IO benchmark with the following options. Notice that if you use the configuration.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can refer to E3SM-IO repository.

	Parameter

	Description

	k

	Keep the output files when program exits

	x

	I/O strategy to write (canonical, log, and blob)

	a

	I/O library name to perform write operation (hdf5, hdf5_log, hdf5_md)

	r

	Number of records/time steps for F case h1 file

	o

	Enable write performance evaluation

	netcdf

	Define the HDF5 compression algorithm to use

Warning

h5bench temporarily only supports -x blob and -a hdf5. If you set other options, they will be overwritten to the supported version.

JSON Configuration (recomended)

To run an instance of AMReX HDF5 benchmark you need to include the following in the benchmarks property of your configuration.json file:

{
 "benchmark": "e3sm",
 "file": "coisa.h5",
 "configuration": {
 "k": "",
 "x": "blob",
 "a": "hdf5",
 "r": "25",
 "o": "ON",
 "netcdf": "../../e3sm/datasets/f_case_866x72_16p.nc"
 }
}

GPU-IO

These benchmarks extend the Read / Write benchmarks with memory transfers to and from GPU memory. Refer to the Build Instructions for enabling these benchmarks with CUDA support.

Configuration

You can configure the h5bench_cuda_write and h5bench_cuda_read benchmarks with the following options. Notice that if you use the samples/sync-cuda-write-1d-contig-contig.json approach to define the runs for h5bench, we will automatically generate the final configuration file based on the options you provide in the JSON file. For standalone usage of this benchmark, you can check the input format at the end of this document and refer to its documentation.

	Parameter

	Description

	MEM_PATTERN

	Options: CONTIG, INTERLEAVED, and STRIDED

	FILE_PATTERN

	Options: CONTIG and STRIDED

	TIMESTEPS

	The number of iterations

	EMULATED_COMPUTE_TIME_PER_TIMESTEP

	Sleeps after each iteration to emulate computation

	NUM_DIMS

	The number of dimensions, valid values are 1, 2 and 3

	DIM_1

	The dimensionality of the source data

	DIM_2

	The dimensionality of the source data

	DIM_3

	The dimensionality of the source data

	DIM_3

	The dimensionality of the source data

	FILE_PER_PROC

	YES to enable file per process mode (NO is not supported with GPU-IO)

For MEM_PATTERN, CONTIG represents arrays of basic data types (i.e., int, float, double, etc.); INTERLEAVED represents an array of structure (AOS) where each array element is a C struct; and STRIDED represents a few elements in an array of basic data types that are separated by a constant stride. STRIDED is supported only for 1D arrays.

For FILE_PATTERN, CONTIG represents a HDF5 dataset of basic data types (i.e., int, float, double, etc.); INTERLEAVED represents a dataset of a compound datatype;

For EMULATED_COMPUTE_TIME_PER_TIMESTEP, you must provide the time unit (e.g. 10 s, 100 ms, or 5000us) to ensure correct behavior.

For DIM_2 and DIM_3 if unused, you should set both as 1. Notice that the total number of particles will be given by DIM_1 * DIM_2 * DIM_3. For example, DIM_1=1024, DIM_2=256, DIM_3=1 is a valid setting for a 2D array and it will generate 262144 particles.

A set of sample configuration files can be found in the samples/ diretory in GitHub.

READ Settings (h5bench_cuda_read)

	Parameter

	Description

	READ_OPTION

	Options: FULL, PARTIAL, and STRIDED

For the PARTIAL option, the benchmark will read only the first TO_READ_NUM_PARTICLES particles.

GPUDirect Storage with GDS VFD

With the HDF5 GDS VFD (https://github.com/hpc-io/vfd-gds), you can benchmark GPUDirect Storage. Note that not all NVIDIA GPUs and filesystems support GDS (see https://docs.nvidia.com/gpudirect-storage for more details on supported platforms). Currently, this mode is only supported by running the benchmark with a config file with the follow parameter set, manually.

	Parameter

	Description

	DYNAMIC_VFD_NAME

	Options: gds

CSV Settings

Performance results will be written to this file and standard output once a file name is provided.

	Parameter

	Description

	CSV_FILE

	CSV file name to store benchmark results

Understanding the Output

The metadata and raw data operations are timed separately, and the overserved time and I/O rate are based on the total time.

Sample output of h5bench_cuda_write:

=================== Performance Results ==================
Total number of ranks: 1
Total emulated compute time: 4.000 s
Total write size: 2.500 GB
Raw h2d time = 82.600 s
Raw d2h time = 46.584 s
Raw write time: 2.003 s
Raw Full write time (inc. d2h) = 246.879 s
Metadata time: 0.002 s
H5Fcreate() time: 0.002 s
H5Fflush() time: 0.000 s
H5Fclose() time: 0.000 s
Observed completion time: 7.311 s
SYNC Raw h2d rate: 30.992 MB/s
SYNC Raw d2h rate: 54.954 MB/s
SYNC Raw write rate: 1.248 GB/s
SYNC Raw Full write rate (inc. d2h): 10.369 MB/s
SYNC Observed write rate: 773.215 MB/s
===

Sample output of h5bench_cuda_read:

=================== Performance Results ==================
Total number of ranks: 1
Total emulated compute time: 4.000 s
Total read size: 2.500 GB
Raw h2d time = 0.697 s
Raw d2h time = 0.494 s
Raw read time: 1.155 s
Raw Full read time (inc. h2d) = 1.851 s
Metadata time: 0.002 s
Observed read completion time: 6.349 s
SYNC Raw h2d rate: 3.587 GB/s
SYNC Raw d2h rate: 5.058 GB/s
SYNC Raw read rate: 2.165 GB/s
SYNC Raw Full read rate (inc. d2h) = 1.350 GB/s
SYNC Observed read rate: 1.063 GB/s
===

Ways to contribute

We appreciate your interest in h5bench, and thank you for taking the time to contribute!

We have compiled a set of instructions to help us make h5bench even better.

Reporting bugs

You can open a new issue using our GitHub issue tracker [https://github.com/hpc-io/h5bench/issues/new/choose]. If you run into an issue, please search first to ensure the issue has not been reported before. Open a new issue only if you have not found anything similar to your issue. Please, try to provide as much information as possible to reproduce your bug quickly.

Suggesting enhancements

You can use our GitHub issue tracker [https://github.com/hpc-io/h5bench/issues/new/choose] to describe your proposed feature. Please, provide the necessary context, covering why it is needed and what problem does it solve.

Adding new benchmarks

We provide a set of instructions on how to add new benchmarks to the h5bench Benchmarking Suite. However, please notice that you might require some changes depending on how your benchmark work. You can contribute in two ways:

	Adding existing benchmarks as submodules: We plan to support only the version included in the original PR, based on its commit hash. Updates on the submodule require the contributor’s help to ensure we can smoothly upgrade the available version without breaking existing features (both in the benchmark and in h5bench).

	Adding newly developed benchmarks: The community may perform maintenance, requiring you to provide comprehensive documentation (in code and usage) and examples to understand the benchmark module.

Example

To illustrate how you can add a new benchmark using the submodule aprroach we will use AMReX:

	You need to include the AMReX repository as a submodule:

git submodule add https://github.com/AMReX-Codes/amrex amrex

	For this benchmark, we need some libraries to be compiled and available as well, so we will need to modify our CMakeLists.txt, so it builds that subdirectory:

set(AMReX_HDF5 YES)
set(AMReX_PARTICLES YES)
set(AMReX_MPI_THREAD_MULTIPLE YES)
add_subdirectory(amrex)

	AMReX comes with several other benchmarks. Still, since we are only interested in the HDF5 one, we will only compile that code. For that, we will need to add the following to our CMakeLists.txt. This is based on how that benchmark is normally compiled within AMReX.

set(amrex_src amrex/Tests/HDF5Benchmark/main.cpp)
add_executable(h5bench_amrex ${amrex_src})

	Be sure to follow the convention of naming the executable as h5bench_ plus the benchmark name, e.g. h5bench_amrex.

	If you are going to provide support for the HDF5 async VOL connector with explicit implementation (which require changes in the original code), make sure you link the required libraries (asynchdf5 and h5async):

if(WITH_ASYNC_VOL)
 set(AMREX_USE_HDF5_ASYNC YES)
 target_link_libraries(h5bench_amrex hdf5 z m amrex asynchdf5 h5async MPI::MPI_C)
else()
 target_link_libraries(h5bench_amrex hdf5 z m amrex MPI::MPI_C)
endif()

	The last step is to update the h5bench Python-based script to handle the new benchmark. On the top of the file, add the path of your benchmark:

H5BENCH_AMREX = 'h5bench_amrex'

Update the run() function that iterates over the benchmarks property list defined by the user in the configuration.json file to accept the new benchmark name:

elif name == 'amrex':
 self.run_amrex(id, benchmark[name], setup['vol'])

You then need to define the run_ function for the benchmark you’re adding. The most important part is translating the configuration defined in the configuration.json file into a format accepted by your benchmark (e.g., a file, a JSON, command line). For AMReX, it requires an amrex.ini file with key-value configurations defined in the format key = value, one per line:

Create the configuration file for this benchmark
with open(configuration_file, 'w+') as f:
 for key in configuration:
 f.write('{} = {}\n'.format(key, configuration[key]))

 f.write('directory = {}\n'.format(file))

If you plan to support the HDF5 async VOL connector, make sure you can enable_vol() and disable_vol() at the beginning and end of this run_ function.

Here you can check an example of the complete run_amrex function:

def run_amrex(self, id, setup, vol):
 """Run the AMReX benchmark."""
 self.enable_vol(vol)

 try:
 start = time.time()

 file = '{}/{}'.format(self.directory, setup['file'])
 configuration = setup['configuration']

 configuration_file = '{}/{}/amrex.ini'.format(self.directory, id)

 # Create the configuration file for this benchmark
 with open(configuration_file, 'w+') as f:
 for key in configuration:
 f.write('{} = {}\n'.format(key, configuration[key]))

 f.write('directory = {}\n'.format(file))

 command = '{} {} {}'.format(
 self.mpi,
 self.H5BENCH_AMREX,
 configuration_file
)

 self.logger.info(command)

 # Make sure the command line is in the correct format
 arguments = shlex.split(command)

 stdout_file_name = 'stdout'
 stderr_file_name = 'stderr'

 with open(stdout_file_name, mode='w') as stdout_file, open(stderr_file_name, mode='w') as stderr_file:
 s = subprocess.Popen(arguments, stdout=stdout_file, stderr=stderr_file, env=self.vol_environment)
 sOutput, sError = s.communicate()

 if s.returncode == 0:
 self.logger.info('SUCCESS')
 else:
 self.logger.error('Return: %s (check %s for detailed log)', s.returncode, stderr_file_name)

 if self.abort:
 self.logger.critical('h5bench execution aborted upon first error')

 exit(-1)

 end = time.time()

 self.logger.info('Runtime: {:.7f} seconds (elapsed time, includes allocation wait time)'.format(end - start))
 except Exception as e:
 self.logger.error('Unable to run the benchmark: %s', e)

 self.disable_vol(vol)

	Make sure you provide some sample JSON configuration files in the configurations directory.

Please, feel free to reach us if you have questions!

Testing

h5bench constantly receives updates and improvements. If you can run the latest version, please consider helping us by reporting your findings, including bugs and performance regressions. Running the benchmarks contained in the h5bench Benchmarking Suite with different configurations and platforms helps us a lot in making it more robust by quickly identifying and solving issues.

Copyright

H5bench: a benchmark suite for parallel HDF5 (H5bench) Copyright (c) 2021, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy) and North Carolina State University. All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Intellectual Property Office at IPO@lbl.gov.

Attention

This Software was developed under funding from the U.S. Department of Energy and the U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit others to do so.

License

H5bench: a benchmark suite for parallel HDF5 (H5bench) Copyright (c) 2021,
The Regents of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S. Dept. of
Energy) and North Carolina State University. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy, North Carolina State University
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches,
or upgrades to the features, functionality or performance of the source
code (“Enhancements”) to anyone; however, if you choose to make your
Enhancements available either publicly, or directly to Lawrence Berkeley
National Laboratory, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license: a
non-exclusive, royalty-free perpetual license to install, use, modify,
prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof,
in binary and source code form.

LAWRENCE BERKELEY NATIONAL LABORATORY
Software: PIOK: Parallel I/O Kernels
Developers: Suren Byna and Mark Howison

* License Agreement *
” PIOK - Parallel I/O Kernels - VPIC-IO, VORPAL-IO, and GCRM-IO, Copyright
(c) 2015, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals
from the U.S. Dept. of Energy). All rights reserved.”

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches,
or upgrades to the features, functionality or performance of the source
code (“Enhancements”) to anyone; however, if you choose to make your
Enhancements available either publicly, or directly to Lawrence Berkeley
National Laboratory, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license: a
non-exclusive, royalty-free perpetual license to install, use, modify,
prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof,
in binary and source code form.

Index

Benchmark Suite Usage

h5bench_patterns benchmark

Major refactoring is in progress, this document may be out of date. All of h5bench_write, h5bench_read, h5bench_write_unlimited, h5bench_overwrite and h5bench_append take config and data file path as command line arguments.

./h5bench_write my_config.cfg my_data.h5
./h5bench_read my_config.cfg my_data.h5
./h5bench_write_unlimited my_config.cfg my_data.h5
./h5bench_overwrite my_config.cfg my_data.h5
./h5bench_append my_config.cfg my_data.h5

This set of benchmarks contains an I/O kernel developed based on a particle physics simulation’s I/O pattern (VPIC-IO for writing data in a HDF5 file) and on a big data clustering algorithm (BDCATS-IO for reading the HDF5 file VPIC-IO wrote).

Settings in the Configuration File

The h5bench_write, h5bench_read, h5bench_write_unlimited, h5bench_overwrite and h5bench_appendtake parameters in a plain text config file. The content format is strict. Unsupported formats :

	Blank/empty lines, including ending lines.

	
	Comment symbol(#) follows value immediately:
	
	TIMESTEPS=5# Not supported

	TIMESTEPS=5 #This is supported

	TIMESTEPS=5 # This is supported

	
	Blank space in assignment
	
	TIMESTEPS=5 # This is supported

	TIMESTEPS = 5 # Not supported

	TIMESTEPS =5 # Not supported

	TIMESTEPS= 5 # Not supported

A template of config file can be found basic_io/sample_config/template.cfg:

#==
General settings
NUM_PARTICLES=16 M #16 K/G
TIMESTEPS=5
EMULATED_COMPUTE_TIME_PER_TIMESTEP=1 s #1 ms, 1 min
#==
Benchmark data dimensionality
NUM_DIMS=1
DIM_1=16777216
DIM_2=1
DIM_3=1
#==
IO pattern settings
IO_OPERATION=READ
#IO_OPERATION=WRITE
MEM_PATTERN=CONTIG
INTERLEAVED STRIDED
FILE_PATTERN=CONTIG # STRIDED
#==
Options for IO_OPERATION=READ
READ_OPTION=FULL # PARTIAL STRIDED
TO_READ_NUM_PARTICLES=4 M
#==
Strided access parameters, required for strided access
#STRIDE_SIZE=
#BLOCK_SIZE=
#BLOCK_CNT=
#==
Collective data/metadata settings
#COLLECTIVE_DATA=NO #Optional, default for NO.
#COLLECTIVE_METADATA=NO #Optional, default for NO.
#==
Compression, optional, default is NO.
#COMPRESS=NO
#CHUNK_DIM_1=1
#CHUNK_DIM_2=1
#CHUNK_DIM_3=1
#==
Async related settings
DELAYED_CLOSE_TIMESTEPS=2
IO_MEM_LIMIT=5000 K
ASYNC_MODE=EXP #EXP IMP NON
#==
Output performance results to a CSV file
#CSV_FILE=perf_write_1d.csv
#
#FILE_PER_PROC=

General Settings

	IO_OPERATION: required, chose from READ, WRITE, WRITE_UNLIMITED, OVERWRITE and APPEND

	MEM_PATTERN: required, chose from CONTIG, INTERLEAVED and STRIDED

	FILE_PATTERN: required, chose from CONTIG, and STRIDED

	NUM_PARTICLES: required, the number of particles that each rank needs to process, can be in exact numbers (12345) or in units (format like 16 K, 128 M and 256 G are supported, format like 16K, 128M, 256G is NOT supported).

	TIMESTEPS: required, the number of iterations

	EMULATED_COMPUTE_TIME_PER_TIMESTEP: required, must be with units (eg,. 10 s, 100 ms or 5000 us). In each iteration, the same amount of data will be written and the file size will increase correspondingly. After each iteration, the program sleeps for $EMULATED_COMPUTE_TIME_PER_TIMESTEP time to emulate the application computation.

	NUM_DIMS: required, the number of dimensions, valid values are 1, 2 and 3.

	DIM_1, DIM_2, and DIM_3: required, the dimensionality of the source data. Always set these parameters in ascending order, and set unused dimensions to 1, and remember that NUM_PARTICLES == DIM_1 * DIM_2 * DIM_3 MUST hold. For example, DIM_1=1024, DIM_2=256, DIM_3=1 is a valid setting for a 2D array when NUM_PARTICLES=262144 or NUM_PARTICLES=256 K, because 10242561 = 262144, which is 256 K.

Example for using multi-dimensional array data

	Using 2D as the example, 3D cases are similar, the file is generated with with 4 ranks, each rank write 8M elements, organized in a 4096 * 2048 array, in total it forms a (4 * 4096) * 2048 2D array. The file should be around 1GB.

Dimensionality part of the Config file:

NUM_DIMS=2
DIM_1=4096
DIM_2=2048
DIM_3=64 # Note: extra dimensions than specified by NUM_DIMS are ignored

Addtional Settings for READ (h5bench_read)

	READ_OPTION: required for IO_OPERATION=READ, not allowed for IO_OPERATION=WRITE.

	FULL: read the whole file

	PARTIAL: read the first $TO_READ_NUM_PARTICLES particles

	STRIDED: read in streded pattern

	TO_READ_NUM_PARTICLES: required, the number for particles attempt to read.

Async Related Settings

	ASYNC_MODE: optional, the default is NON.

	NON: the benchmark will run in synchronous mode.

	EXP: enable the asynchronous mode. An installed async VOL connector and coresponding environment variables are required.

	IO_MEM_LIMIT: optional, the default is 0, requires ASYNC_MODE=EXP, only works in asynchronous mode. This is the memory threshold used to determine when to actually execute the IO operations. The actual IO operations (data read/write) will not be executed until the timesteps associated memory reachs the threshold, or the application run to the end.

	DELAYED_CLOSE_TIMESTEPS: optional, the default is 0. The groups and datasets associated to to the timesteps will be closed later for potential caching.

Compression Settings

	COMPRESS: YES or NO, optional. Only applicable for WRITE(h5bench_write), has no effect for READ. Used to enable compression, when enabled, chunk dimensions(CHUNK_DIM_1, CHUNK_DIM_2, CHUNK_DIM_3) are required. To enable parallel compression feature for VPIC, add following section to the config file, and make sure chunk dimension settings are compatible with the data dimensions: they must have the same rank of dimensions (eg,. 2D array dataset needs 2D chunk dimensions), and chunk dimension size cannot be greater than data dimension size.

COMPRESS=YES # to enable parallel compression(chunking)
CHUNK_DIM_1=512 # chunk dimensions
CHUNK_DIM_2=256
CHUNK_DIM_3=1 # extra chunk dimension take no effects

Attention

There is a known bug on HDF5 parallel compression that could cause the system run out of memory when the chunk amount is large (large number of particle and very small chunk sizes). On Cori Hasswell nodes, the setting of 16M particles per rank, 8 nodes (total 256 ranks), 64 * 64 chunk size will crash the system by runing out of memory, on single nodes the minimal chunk size is 4 * 4.

Collective Operation Settings

	COLLECTIVE_DATA: optional, set to “YES” for collective data operations, otherwise and default (not set) cases for independent operations.

	COLLECTIVE_METADATA: optional, set to “YES” for collective metadata operations, otherwise and default (not set) cases for independent operations.

Other Settings

	CSV_FILE: optional CSV file output name, performance results will be print to the file and the standard output as well.

Supported Patterns

Attention

Not every pattern combination is covered, supported benchmark parameter settings are listed below.

Supported Write Patterns (h5bench_write): IO_OPERATION=WRITE

The I/O patterns include array of structures (AOS) and structure of arrays (SOA) in memory as well as in file. The array dimensions are 1D, 2D, and 3D for the write benchmark. This defines the write access pattern, including CONTIG (contiguous), INTERLEAVED and STRIDED” for the source (the data layout in the memory) and the destination (the data layout in the resulting file). For example, MEM_PATTERN=CONTIG and FILE_PATTERN=INTERLEAVED is a write pattern where the in-memory data layout is contiguous (see the implementation of prepare_data_contig_2D() for details) and file data layout is interleaved by due to its’ compound data structure (see the implementation of data_write_contig_to_interleaved () for details).

4 patterns for both 1D and 2D array write (NUM_DIMS=1 or NUM_DIMS=2)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG
MEM_PATTERN=CONTIG, FILE_PATTERN=INTERLEAVED
MEM_PATTERN=INTERLEAVED, FILE_PATTERN=CONTIG
MEM_PATTERN=INTERLEAVED, FILE_PATTERN=INTERLEAVED

1 pattern for 3D array (NUM_DIMS=3)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG

1 strided pattern for 1D array (NUM_DIMS=1)

MEM_PATTERN=CONTIG, FILE_PATTERN=STRIDED

Supported Read Patterns (h5bench_read): IO_OPERATION=READ

1 pattern for 1D, 2D and 3D read (NUM_DIMS=1 or NUM_DIMS=2)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG, READ_OPTION=FULL, contiguously read through the whole data file.

2 patterns for 1D read

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG, READ_OPTION=PARTIAL, contiguously read the first $TO_READ_NUM_PARTICLES elements.

MEM_PATTERN=CONTIG, FILE_PATTERN=STRIDED, READ_OPTION=STRIDED

Supported Unlimited Write Patterns (h5bench_write_unlimited): IO_OPERATION=WRITE. This is a bootstrap for Append.

1 pattern for 1D, 2D and 3D write (NUM_DIMS=1 or NUM_DIMS=2 or NUM_DIMS=3)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG, COMPRESS=YES

Supported Append Patterns (h5bench_append): IO_OPERATION=APPEND. Read the dataset and extend the dataset by doubling it at the end of the first dimension.

1 pattern for 1D, 2D and 3D write (NUM_DIMS=1 or NUM_DIMS=2 or NUM_DIMS=3)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG, COLLECTIVE_DATA=YES

Supported Overwrite Patterns (h5bench_overwrite): IO_OPERATION=OVERWRITE. Overwrite every dataset in a given file. Dimension parameters have to be consistent with the given file’s dimension parameters.

1 pattern for 1D overwrite (NUM_DIMS=1 or NUM_DIMS=2 or NUM_DIMS=3)

MEM_PATTERN=CONTIG, FILE_PATTERN=CONTIG

Sample Settings

The following setting reads 2048 particles from 128 blocks in total, each block consists of the top 16 from every 64 elements. See HDF5 documentation for details of using strided access.

General settings
NUM_PARTICLES=16 M
TIMESTEPS=5
MULATED_COMPUTE_TIME_PER_TIMESTEP=1 s
#==
Benchmark data dimensionality
NUM_DIMS=1
DIM_1=16777216
DIM_2=1
DIM_3=1
#==
IO pattern settings
IO_OPERATION=READ
MEM_PATTERN=CONTIG
FILE_PATTERN=CONTIG
#==
Options for IO_OPERATION=READ
READ_OPTION=PARTIAL # FULL PARTIAL STRIDED
TO_READ_NUM_PARTICLES=2048
#==
Strided access parameters
STRIDE_SIZE=64
BLOCK_SIZE=16
BLOCK_CNT=128

For more examples, please find the config files and template.cfg in basic_io/sample_config/ directory.

To Run the h5bench_write, h5bench_read, h5bench_write_unlimited, h5bench_append and h5bench_overwrite

All of them use the same command line arguments:

Single process run:

./h5bench_write sample_write_cc1d_es1.cfg my_data.h5

Parallel run (replace mpirun with your system provided command, for example, srun on Cori/NERSC and jsrun on Summit/OLCF):

mpirun -n 2 ./h5bench_write sample_write_cc1d_es1.cfg output_file

In Cori/NERSC or similar platforms that use Cray-MPICH library, if you encouter a failed assertion regarding support for MPI_THREAD_MULTIPLE you should define the following environment variable:

export MPICH_MAX_THREAD_SAFETY="multiple"

Argobots in MacOS

If you’re trying to run the benchmark in a MacOS and are getting segmentation fault (from ABT_thread_create), please try to set the following environment variable:

ABT_THREAD_STACKSIZE=100000 ./h5bench_write sample_write_cc1d_es1.cfg my_data.h5

Understanding the Output

The metadata and raw data operations are timed separately, and overserved time and rate are based on the total time.

Sample output of h5bench_write:

================== Performance results =================
Total emulated compute time 4000 ms
Total write size = 2560 MB
Data preparation time = 739 ms
Raw write time = 1.012 sec
Metadata time = 284.990 ms
H5Fcreate() takes 4.009 ms
H5Fflush() takes 14.575 ms
H5Fclose() takes 4.290 ms
Observed completion time = 6.138 sec
Raw write rate = 2528.860 MB/sec
Observed write rate = 1197.592 MB/sec

Sample output of h5bench_read:

================= Performance results =================
Total emulated compute time = 4 sec
Total read size = 2560 MB
Metadata time = 17.523 ms
Raw read time = 1.201 sec
Observed read completion time = 5.088 sec
Raw read rate = 2132.200 MB/sec
Observed read rate = 2353.605225 MB/sec

Sample output of h5bench_write_unlimited:

================== Performance results =================
Total emulated compute time 4000 ms
Total write size = 2 MB
Raw write time = 6.464 sec
Metadata time = 994.788 ms
H5Fcreate() takes 6.111 ms
H5Fflush() takes 203.762 ms
H5Fclose() takes 39.520 ms
Observed completion time = 11.710 sec
Sync Raw write rate = 0.309 MB/sec
Sync Observed write rate = 0.259 MB/sec

Sample output of h5bench_append:

================= Performance results =================
Total emulated compute time = 4000 ms
Total modify size = 2 MB
Raw modify time = 7.466 sec
Metadata time = 18.080 ms
Observed modify completion time = 11.507 sec
Sync Raw modify rate = 0.268 MB/sec
Sync Observed modify rate = 0.266425 MB/sec

Sample output of h5bench_overwrite:

================= Performance results =================
Total emulated compute time = 4000 ms
Total modify size = 24 MB
Raw modify time = 0.008 sec
Metadata time = 4.497 ms
Observed modify completion time = 4.026 sec
Sync Raw modify rate = 3004.507 MB/sec
Sync Observed modify rate = 915.646118 MB/sec

h5bench_exerciser

We modified this benchmark slightly so to be able to specify a file location that is writable. Except for the first argument $write_file_prefix, it’s identical to the original one. Detailed README can be found int source code directory, the original can be found here https://xgitlab.cels.anl.gov/ExaHDF5/BuildAndTest/-/blob/master/Exerciser/README.md

Example run:

mpirun -n 8 ./h5bench_exerciser $write_file_prefix -numdims 2 --minels 8 8 --nsizes 3 --bufmult 2 --dimranks 8 4

The Metadata Stress Test: h5bench_hdf5_iotest

This is the same benchmark as it’s originally found at https://github.com/HDFGroup/hdf5-iotest. We modified this benchmark slightly so to be able to specify the config file location, everything else remains untouched.

Example run:

mpirun -n 4 ./h5bench_hdf5_iotest hdf5_iotest.ini

Streaming operation benchmark: h5bench_vl_stream_hl

This benchmark tests the performance of append operation. It supports two types of appends, FIXED and VLEN, represents fixed length data and variable length data respectively. Note: This benchmark doesn’t run in parallel mode.

To run benchmarks

./h5bench_vl_stream_hl write_file_path FIXED/VLEN num_ops

Example runs:

./h5bench_vl_stream_hl here.dat FIXED 1000
./h5bench_vl_stream_hl here.dat VLEN 1000

 _static/file.png

_static/h5bench-logo-small.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 h5bench

 		
 Build Instructions

 		
 Build with CMake (recommended)

 		
 Dependency and environment variable settings

 		
 Compile with CMake

 		
 Build with HDF5 ASYNC VOL connector support

 		
 Build with Spack

 		
 Running h5bench

 		
 h5bench (recommended)

 		
 Configuration

 		
 Manual Execution

 		
 Read / Write

 		
 Configuration

 		
 READ Settings (h5bench_read)

 		
 Asynchronous Settings

 		
 Compression Settings

 		
 Collective Operation Settings

 		
 CSV Settings

 		
 Supported Patterns

 		
 Supported Write Patterns (h5bench_write)

 		
 Supported Read Patterns (h5bench_read)

 		
 Understanding the Output

 		
 Known Issues

 		
 Metadata Stress

 		
 Configuration

 		
 JSON Configuration (recomended)

 		
 Standalone Configuration

 		
 AMReX

 		
 Configuration

 		
 JSON Configuration (recomended)

 		
 HDF5 ASYNC VOL Connector

 		
 Standalone Configuration

 		
 OpenPMD

 		
 Configuration

 		
 JSON Configuration (recomended)

 		
 Standalone Configuration

 		
 Exerciser

 		
 Configuration

 		
 Required

 		
 Optional

 		
 Exerciser Basics

 		
 E3SM

 		
 Configuration

 		
 JSON Configuration (recomended)

 		
 GPU-IO

 		
 Configuration

 		
 READ Settings (h5bench_cuda_read)

 		
 GPUDirect Storage with GDS VFD

 		
 CSV Settings

 		
 Understanding the Output

 		
 Ways to contribute

 		
 Reporting bugs

 		
 Suggesting enhancements

 		
 Adding new benchmarks

 		
 Example

 		
 Testing

 		
 Copyright

 		
 License

_static/images/dimranks.png
Example 2:

3

_static/images/h5bench-logo-small.png

_static/images/h5bench-logo.png

